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Notation

Here is a summary of the most common notations and conventions used throughout this work.

• The nonzero elements of Zp, and Fp are respectively denoted by Z×
p , and F×

p .

• When finite fields are considered, the characteristic is different from 2.

• Let x ∈ R, the smallest integer grater than x is ⌈x⌉, while the bigger integer less than x is
⌊x⌋.

• The Euler totient function is indicated by φ(·).

• If the element a is randomly chosen from the set X, we will write a ∈R X.

• Let G be a group acting on X by conjugation, we adopt the exponential notation, i.e. the
action of g ∈ G over x ∈ X is xg.

• If R is a commutative ring, and G a finite group, we denote the group ring as R[G] :=
{
∑
g∈G agg | ag ∈ R}.

• We use Φd(x) ∈ Z[x] to indicate the cyclotomic polynomial whose complex roots are the
primitive d–roots of unity.

• If d is a positive divisor of N , we denote

Ψn,d(x) :=
xn − 1

Φd(x)
∈ Z[x],

and

Ψd(x) := Ψd,d =
xd − 1

Φd(x)
∈ Z[x].

• Let R be a ring, whileM and N respectively a right and left R– module; we denoteM⊗RN
the tensor product of M and N.
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Chapter 1

Introduction

In this work, we recall a few basic concepts about cryptography, such as the definition of a
cryptosystem, and the difference between private and public–key encryption. We will then focus
on the latter, in particular on discrete log–cryptosystems. The former example is the system
introduced by Taher Elgamal in 1985, which is indeed based on the difficulty of finding the
logarithm modulo a prime in polynomial time. In particular, we prove how the security of El
Gamal cryptosystem also depends on the choice of the chosen prime p (in particular on (p − 1)
factorization).

Discrete log problem can be formulated in an analog guise for a generic group; following
Elgamal’s construction leads to a generalization of the former case which keeps the denomination
of discrete log–cryptography.

We conclude Chapter 2 with a particular example of a discrete log–cryptosystem that arises
by choosing, as the group in the above–mentioned definition, an elliptic curve over a finite field.
The Elliptic Curve Cryptosystem (ECC) is, actually, one of the most used (e.g. in Bitcoin
signatures), and therefore of big interest in modern research.

There are also recent examples of discrete log–cryptosystems defined over an abelian variety,
in particular over the Fq–points of the variety (e.g. the multiplicative group Gm).

It is then interesting, also in order to study the security of the system, the study of its
algebraic structure. We will see how this leads to the definition of a primitive subgroup of an
algebraic group.

More explicitly, considering V , an algebraic group over k, the algebraic variety obtained with
the Weil restriction of scalars of V from L to k (where L is a finite abelian extension of k)
is isogenous to the direct sum of primitive subgroups of V. In other words, the security of a
cryptosystem defined on V actually relies on the security of the restriction in those subgroups.
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Chapter 2

Cryptography bases

In this chapter we introduce a few basic concepts concerning cryptography, with the seek of giving
a general understanding of the topic, and without the pretense of being either self contained or
complete (for further readings see [1]).

After giving the definition of a cryptosystem, we briefly talk about the difference of symmetric
ones respect to the asymmetric. Then, we concentrate on the latter case (the more interesting,
especially nowadays), and in particular on examples of discrete log–based cryptosystems. These
particular cases are widely studied for themselves, because of their wide application. However,
at present are being studied some generalizations which use advanced abstract algebra (and not
only). In this work we will present an example that relies on primitive subgroups of an algebraic
group.

2.1 Basics definitions

Suppose Alice and Bob are two friends who want to communicate through a (public) channel1,
but ensure that their secret are safe from an evil Eve who can possibly intercept the message
they shared.

The natural method they can adopt is to agree on an invertible procedure to convert their
messages into other strings, and send the latter in the channel. This lead to:

Definition 2.1.1. A cryptosystem is a tuple (X ,Y,K, e, d) where:

• X is a finite set of plaintexts;

• Y is a finite set of ciphertexts;

• K is a finite set of keys;

• e = {ek : X → Y}k∈K is a family of encryption maps;

• d = {dk : X → Y}k∈K is a family of decryption maps;

such that for all k ∈ K
dk(ek(x)) = x. (2.1)

1More precisely, a channel that could be eavesdropped, but in which the receiver always knows, with certainty,
who sent a message.
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2.1 Basics definitions 5

In practical cases the sets considered are often numerical ones, those are put in correspondence
with strings by opportune functions.

Example 2.1.1. (Hill cryptosystem) Take for instance H = (X ,Y,K, e, d) of the form: X = Y =
(Zn)m, the keys K = GLm(Zn), i.e. the general linear group of m × m matrices which are
invertible modulo n, ek(x) = k · x, and dk(y) = k−1 · y.

2.1.1 Private–key cryptosystems

A crucial step in the above procedure, is sharing the key (or the keys) before beginning the
communication. If the exchange is done privately (e.g. in person) before, the cryptosystem
adopted is a private–key one, and is also said symmetric.

It is know that, provided choosing a suitable key–set, a symmetric system is perfectly secure,
i.e. there are no attacks that Eve can attempt only based on knowing the ciphertext (this is why
symmetric cryptosystems are also employed in military framework). Despite not being a central
topic in this work, and therefore can be ignored, the proof of this classical result is discussed in
the next subsection.

Shannon’s theorem

In this section we consider a probabilistic experiment definingX andK, two independent random
variables with values respectively in X and K, i.e.

P (X = x ∧K = k) = P (X = x)P (K = k). (2.2)

Notice that these two random variables defines a third one, namely Y := e(K,X) : Ω → Y.
Moreover, we will assume P (X = x) > 0 and P (Y = y) > 0. Since

P (Y = y | X = x) = P (K ∈ {k : ek(x) = y}) (2.3)

we have

P (Y = y) =
∑
x∈X

P (Y = y ∧X = x) =
∑
x∈X

P (Y = y | X = x)P (X = x) (2.4)

=
∑
x∈X

P (K ∈ {k : ek(x) = y})P (X = x). (2.5)

Definition 2.1.2. A cryptosystem is said Shannon perfectly secure if X and Y are inde-
pendent, i.e.

P (X = x | Y = y) = P (X = x). (2.6)

In other words, the perfect security we can aspire to is finding an encryption method which
leads to a ciphertext that doesn’t reveal anything about the original secret.

Theorem 2.1.1. Let (X ,Y,K, e, d) be a cryptosystem such that |X | = |Y| = |K|, let’s consider
the above probabilistic experiment, and assume

• X and K are independent,

• P (Y = y) > 0 for all y ∈ Y.

Then the cryptosystem is perfectly secure if and only if

(i) For all x ∈ X and y ∈ Y, ∃!k such that ek(x) = y, (we denote it as kxy).
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(ii) P (K = k) = 1/|K|.

Proof. First of all, notice that (i) implies

kxy = kx′y′ ⇐⇒ either x = x′ ∧ y = y′ or x ̸= x′ ∧ y ̸= y′. (2.7)

(⇐) Let’s verify the definition

P (X = x | Y = y) =
P (X = x ∧ Y = y)

P (Y = y)

(2.5)
=

P (X = x ∧K ∈ {k : ek(x) = y})∑
x′∈X P (K ∈ {k : ek(x′) = y})P (X = x′)

(2.8)

(2.2)
=

P (X = x)P (K = kxy)∑
x′∈X P (K = kx′y)P (X = x′)

(i)
=

P (X = x)1/|K|
1/|K| ·

∑
x′∈X P (X = x′)

(2.9)

= P (X = x). (2.10)

(⇒) Fix and x and notice that for all y ∈ Y

0 < P (Y = y)
ind
= P (Y = y | X = x)

(2.3)
= P (K ∈ {k : ek(x) = y}), (2.11)

so for all x and y the set {k : ek(x) = y} ≠ ∅. We deduce that for each x the functions

fx : K → Y (2.12)

k 7→ y := ek(x) (2.13)

are surjective and, since |K| = |Y|, also injective, i.e. we have proved (i).
(i) implies {k : ek(x) = y} = {kxy} for all (x, y), moreover from above follows that

P (K = kxy) = P (K = kx′y) = P (Y = y) > 0, for all x, x′ ∈ X (2.14)

and so, fixing y and using (2.7), we have:

kxy = kx′y ⇔ x = x′, (2.15)

and so the function gy : X → K s.t. gy(x) = kxy is injective (and also bijective).
We deduce

1 =
∑
x∈X

P (X = x) =
∑
x∈X

P (X = x | Y = y) =
∑
x∈X

P (K = gy(x)) = (2.16)

=
∑
x∈X

P (K = kxy) = |X|P (Y = y) (2.17)

and, since |X | = |K|, we can conclude

P (K = k) = P (Y = y) = 1/|K|. (2.18)

2.1.2 Public–key cryptosystems

In the years, modern practical applications required the possibility to privately communicate
(e.g. by email or WhatsApp) with people without sharing symmetrically a private key before.

The problem was solved by Diffie and Hellman who proposed the following DH–scheme [2],
based on the assumption that there are certain algebraic functions and problems (see appendix
A for basic definitions) that are computationally easy to solve, but their inverse is not.
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The DH–scheme uses two keys (a private and a public one) that are mathematically related
to each other. The strength of security lies in these keys’ properties since it is computationally
infeasible to calculate one key using the other. Each sender and receiver will have their private-
public key pair in this system.

More explicitly, if Alice wants to send a message to Bob, she will need to use his public key
to encrypt the message, and Bob will decrypt the message using his private key. In practice,
when we communicate only, we share a key in a asymmetric way and then we use the latter to
continue the encryption symmetrically.

A rigorous definition of the above procedure is the following:

Definition 2.1.3. The family {X ,Y,K, e, d, u,U} is an asymmetric cryptosystem with se-
curity parameter η = |θ| if

(i) u : K → U is a PT publication function u(k), called public key of k.

(ii) The family {eu(k) : X → Y}θ is a one–way family with trapdoor k.

(iii) dk(eu(k)(x)) = x for all x ∈ X .

(iv) it should be efficient to sample K as |θ| grows.

The fourth condition imposes that it should be easy to sample a random key for each param-
eter θ.

Example 2.1.2 (RSA). The following system is widely adopted and known; it is based on the
hardness of finding the square roots modulo θ = n = pq, with p and q large primes. It is easy to
show, indeed, that this problem is as difficult as factoring n.

Taking X = Y = Zn, K = {(a, b) : ab = 1 mod φ(n) = (p− 1)(q − 1)}, u(a, b) = a, and

ea(x) = xa mod n, and d(a,b)(y) = yb mod n (2.19)

The idea is simply using the fact Zpq = Zp × Zq and so

x = (a, b) = 0 mod n = pq ⇐⇒ a = 0 mod p, and b = 0 mod q. (2.20)

2.2 Discrete log–cryptography

Now, we focus on a particular class of public–key cryptosystems, which takes inspiration by El
Gamal, who first introduced a scheme based on the hardness of finding the discrete logarithm
modulo a large prime. We will first look at this remarkable example, and then see an analog
problem related to elliptic curves.

2.2.1 El Gamal system

It is well known, and also easy to show, that the following problem is, in general, in the NP
class. In fact, it has been showed that for a lot of primes it is actually in P.

Problem 2.2.1. Let p be a prime, α a generator of Z×
p and β ∈ Z×

p . Find 0 ≤ a ≤ p − 2 such
that

αa = β mod p. (2.21)

As anticipated, the security of the following one is based on the (assumed) hardness of problem
2.2.1.
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Definition 2.2.1. Let p be a prime for which the discrete log problem is hard (e.g. p = 2q+1 with
q a large prime) and α a public known primitive element of Z×

p . The El Gamal cryptosystem
is defined taking

• X = Z×
p (plaintext space);

• Y = Z×
p × Z×

p (ciphertext space);

• K = {(a, β) : αa = β} (key space)

• u : K → Z×
p with u(a, β) = β the publication map;

• eβ(x) = (y1, y2) := (αr mod p , xβr mod p) where r ∈R Zp−1 is randomly taken;

• d(a,β)(y1, y2) = y2(y
a
1 )

−1 mod p.

The above condition on the prime p, follows from various attacks that Eve can attempt, in
particular trying to factor p − 1. In the following subsection we present an example of attack,
which offers a connection with a more general case that we will encounter in Chapter 3.

Pohlig–Hellman theorem

The key observation to perform the following attack is that if p− 1 is a product of prime which
are “small enough”, then El Gamal is vulnerable since we can compute the logarithm in the
single p–groups (see proof below for the algorithm). This also motivate the following:

Definition 2.2.2. A number is said to be n–smooth if the prime number in its decomposition
are not larger that n.

Theorem 2.2.1 (Pohlig–Hellman). If p is a prime such that (p−1) is O(polylog(p)) – smooth2,
then there is a polynomial algorithm to compute the discrete log of p.

Proof. Given (α, β) we want to compute a = logα β mod p, with p prime, and p− 1 =
∏s
i=1 q

ei
i

(with qi polylog bounded). Notice that a ∈ Zp−1
∼= Zqe11 ×· · ·×Zqess , so it’s enough to determine

a mod qeii for i = 1, . . . , s.
Fix a i, by hypothesis ei ∈ O(log p) and qi ∈ O(polylog(p)). Moreover, since p − 1 = 0

mod qeii and so we can write a mod qeii in base qi with at most ei symbols:

a mod qeii = [aei−1 · · · a1a0]qi =
ei−1∑
j=1

ajq
j
i , (2.22)

Lemma 2.2.1. We have that a0 is the element that satifies β(p−1)/qi = α(p−1)a0/qi mod p.

Proof. Modulo p we have

β(p−1)/qi = α

(
dq

ei
i +

∑ei−1

j=0 ajq
j
i

)
(p−1)/qi

= α

(
dq

ei−1

i +
∑ei−1

j=1 ajq
j−1
i

)
(p−1)

α
p−1
qi

a0 = 1 · α
p−1
qi

a0 .
(2.23)

2We write polylog(x) to indicate a polynomial evaluated in log x.
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So to determine a0 it is sufficient to check the equality above for a ∈ {0, . . . , q−2}, remember
that the Power Mod can be computed in PT. Found a0, it’s sufficient to subtract a0 from a
mod qeii and then divide by qi to apply recursively the lemma above. To compute the overall
complexity, notice

1) the number of primes s is clearly O(log(p)).

2) Each ei ∈ (log(p)).

3) By hypothesis qi ∈ O(polylog(p)) as p− 1 is polylog smooth.

So the overall complexity is polynomial in the number of bits of p.

Remark 2.2.1. Notice that the above algorithm uses the fact that we can consider the singles
qi–groups to compute the discrete log. Thus, in this sense, we can say that the security of the
system depends on the dimension of those groups.

2.2.2 Elliptic curves discrete log problem

A natural generalization of El Gamal cryptosystem is the following:

Definition 2.2.3. Let (G, ·) be a commutative group such that H is a cyclic subgroup with
order n, and generator α. We take

• X = G (plaintext space);

• Y = H ×G (ciphertext space);

• K = {(a, β) : αa = β} ⊂ Zn ×H (key space)

• u : K → H, where u(a, β) = β is the publication map;

• eβ(x) = (y1, y2) with

- r ∈R Zn is randomly chosen,

- y1 = αr, and y2 = xβr.

• d(a,β)(y1, y2) = y2(y
a
1 )

−1 mod p.

Now, since the following problem is considered to be hard, elliptic curves are a natural
candidate for a cryptosystem of this guise.

Problem 2.2.2. (Discrete log problem for elliptic curves) Let (E,+) be an elliptic curve defined
over Fp. Let then P ∈ E be a generator of a large subgroup3 H in G, given Q ∈ H, find m
integer such that mP = Q.

Given an elliptic curve E on Fp (p a large prime), definition 2.2.3 describes the so called
Elliptic curve cryptosystem or ECC (notice that in this case the notation is additive). ECC
is widely used in application, for example in the implementation of Bitcoin signature scheme. As
in El Gamal example, is proven that problem 2.2.2 is not always in NP, and there are attacks
analogue to Pohlig–Hellman’s one.

3A good introduction to elliptic curves, and in particular a proof that such a cyclic subgroup always exists can
be found in [3]
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Example 2.2.1. (Diffie–Hellman key agreement) Suppose Alice and Bob want to share a secret
using ECC. Let the public parameters of the system be the elliptic curve E, on Fp, and the
subgroup generator P ∈ E. Moreover, the two are both given a key, respectively (P, nA) and
(P, nB), whose first part is public (is actually the generator) and the second is a private and
random integer (also said exponent).

If they compute respectively points QA := nAG, and QB := nBG. The secret that they can
share (and later possibly use to encrypt their conversation) is the point S = nBQA = nAQB . In
fact, is sufficient that they send QA, and QB to each other and multiply what received by their
private key. Notice that Bob can’t deduce nA from QA (unless solving problem 2.2.2), and vice
versa. In particular Eve, even intercepting the messages QA and QB , has no (obvious) way to
find S.

Remark 2.2.2. A point that we haven’t stressed in this work, but is crucial, is that the opera-
tions in the procedure need to be computationally efficient4.

4If interested, the reader can find here my implementation of ECC in python (but I suggest to look for better
ones).

https://github.com/dalcio99/CTF-cryptography/blob/main/CryptoHack/Elliptic_Curves/Efficient_exchange.py


Chapter 3

Twisting commutative algebraic
groups

In the previous chapter we described a few standard examples of discrete log–based cryptography,
in particular El Gamal and ECC. Now, we move to a more general framework, what are considered
in this setting are Fq–points of the multiplicative groupGm, or the Fq–points of an abelian variety
A over Fq (usually an elliptic curve). Our scope is to show how discrete log-based cryptography
over extension fields can be reduced to cryptography in primitive subgroups; this generalization
was suggested in [4], and interesting examples were presented in [5].

3.1 Primitive subgroups

Despite applications are of course implemented over finite fields (in particular in the above two
cases), it is useful to work in a more general setting. Thus, in this section we will assume that
V is a commutative algebraic group over a field k, and L is an abelian extension of k of finite
degree n, i.e. Gal(L/k) is commutative. We will also use some notation introduced in Appendix
B.

3.1.1 Weil restriction of scalars

Restriction of scalars is a way to associate an algebraic variety X over L another variety
ResL/k(X) over k1.

Definition 3.1.1. The restriction of scalars of V from L to k is a commutative algebraic
group over k, that we denote ResL/k(V ), together with a homomorphism over L

ηL/k : ResL/k(V ) −→ V (3.1)

with the universal property that for every variety X over k, the map

Homk(X,ResL/k(V )) −→ HomL(X,V )

f 7−→ ηL/k ◦ f (3.2)

is an isomorphism.
1Weil restriction of scalars variety actually represents a functor from k–schemes to sets but, for our purposes

and consistency, it is convenient to give a more practical definition.

11
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Remark 3.1.1. Notice that for every k–algebra A, by taking X = Spec(A) in condition (3.2),
one finds that ηL/k : (ResL/k(V ))(A) −→ V (A⊗k L) is an isomorphism. In particular

(ResL/k(V ))(k) ∼= V (L). (3.3)

To clear the above definition, consider the following.

Example 3.1.1. Let’s consider V as defined by a system of polynomial equations:

fl(x1, . . . , xr) = 0, fl ∈ L[x1, . . . , xr] for 1 ≤ l ≤ s. (3.4)

Fixing a basis {v1, . . . , vn} of the extension L over k, and introuducing new variables yij ex-
pressing the combinations xi =

∑n
j=1 yijvj , leads to a system of s equations in the rn unknowns

{yij}. The latter defines a n · dim(V )–dimensional variety over k which is in fact ResL/k(V ).

As anticipated above, the aim of this chapter is to generalize discrete log–based cryptography
viewpoint to a more algebraic one. To this scope is convenient to introduce a couple of examples.

The multiplicative group and quadratic extensions

Assume D ∈ k× is a non–square, let L = k(
√
D), and G = Gal(L/k) with generator σ. One can

consider the multiplicative group Gm as the variety in A2 defined by the equations xy = 1. In
this case,

Proposition 3.1.1. ResL/k(Gm) is the variety R in A3 defined by (x21 − Dx22)y = 1 with the
commutative operation

(x1, x2, y) ·Gm (w1, w2, z) = (x1w1 +Dx2w2, x1w2 + x2w1, yz). (3.5)

Proof. Define ηL/k : R→ Gm as

(x1, x2, y) 7→ (x1 + x2
√
D, (x1 − x2

√
D)y) (3.6)

Given X a variety over k and ψ ∈ HomL(X,Gm) we can define

=

(
ψ + ψσ

2
,
ψ − ψσ

2
√
D

,
1

ψψσ

)
∈ Homk(X,R). (3.7)

and also check that ηL/k ◦ ψ̃ = ψ. In this case, showing that the map (3.2) is an isomorphism
follows from the fact that ηL/k ◦ f = f.

Elliptic curves and quadratic extensions

Suppose E : y2 = f(x) is an elliptic curve on k, thus deg(f) = 3, and that D ∈ k× is a
non–square. As above, let L = k(

√
D), and G = Gal(L/k) with generator σ.

The quadratic twist of E by D is the curve E(D) : Dy2 = f(x), and the two are isomorphic
over L by

ϕ : E −→ E(D)

(x, y) 7−→ (x, y/
√
D). (3.8)
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Proposition 3.1.2. With the above assumptions, ResL/k(E) is (E × E(D))/T , where

T := {(P, ϕ(P ) ∈ E × E(D) : 2P = O} = ker(f0) ∩ ker([2]), (3.9)

where [2] is the multiplication by two in E, and

f0 : E × E(D) −→ E

(P,Q) 7−→ P − ϕ−1(Q) (3.10)

In this case ηL/k : (P,Q) 7→ P + ϕ−1(Q).

3.1.2 Definition of primitive subgroup

We conclude this section giving the definition of a primitive subgroup VF of V and enunciating
some of his properties, whose proofs exile from the scopes of this script and can be find in [4].

As above, L/k is a finite abelian extension of k. Our aim is to associate to each intermediate
field F (i.e. k ⊆ F ⊆ L) such that F/k is cyclic, a commutative algebraic group VF over k.

Before giving the definition, we have to describe some context and notations. Let G :=
Gal(L/k), if g ∈ G we have that ηgL/k ∈ HomL(ResL/k(V ), V ) and by (3.2) applied to ResL/k(V ),

exists a unique gL/k,V ∈ Endk(ResL/k(V )) such that ηL/k ◦ gL/k,V = ηgL/k. Now we have the

correspondence g 7→ gL/k,V , which can be linearly extended to a ring homomorphism: writing
α =

∑
g∈G ag g (with ag ∈ Z) and imposing

Z[G] −→ Endk(ResL/k(V ))

α 7−→ αL/k,V :=
∑
g∈G

ag gL/k,V (3.11)

Considering k–points and identifying (ResL/k(V ))(k) with V (L) as in the remark 3.1.1, if α =∑
g∈G ag g ∈ Z[G], and v ∈ (ResL/k(V ))(k) ∼= V (L) then αL/k,V (v) =

∏
g∈G g(x)

ag .

Example 3.1.2. The map (3.11) is injective if the natural application Z −→ Endk(V ) is injective.
For instance, taking V = Gm (or another abelian variety) leads to an injective map, while
V = ker[n] (with [n] the multiplication by n on an elliptic curve) does not.

Now, if k ⊆M ⊆ F, let

NF/M :=
∑

h∈Gal(F/M)

h ∈ Z[Gal(F/M)] ⊆ Z[Gal(F/k)]. (3.12)

Theorem–Definition 3.1.1. Assume V is a commutative algebraic group over k, F is a field
extension of k, and F/k is cyclic. Fix a generator τ of Gal(F/k), and consider Φd(τ),Ψd(τ) ∈
Z[Gal(F/k)] and Φd(τ)F/k,V ,Ψd(τ)F/k,V ∈ Endk(ResF/k(V )) as above. Then, the following are
equivalent conditions and they define a primitive subgroup VF , associated with the field F ,
of the group V .

(i) VF = ker(Φd(τ)F/k,V ) ⊆ ResF/k(V ),

(ii) VF =
⋂
M∈ΩF/k

ker((NF/M )F/k,V ) =
⋂
M∈Ω′

F/k
ker((NF/M )F/k,V ) ⊆ ResF/k(V ),

(iii) VF =
⋂
M∈ΩF/k

ker(RF/M/k,V ) =
⋂
M∈Ω′

F/k
ker(RF/M/k,V ) ⊆ ResF/k(V ),
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(iv) if F ⊆ L, with L/k abelian2, [L : k] = n, and σ ∈ G := Gal(L/k) such that its restriction
on Gal(F/k) is one of its generators, i.e. Gal(F/k) = ⟨σ|F ⟩. Then

(a) VF = (NL/F ·Ψd(σ))L/k,V (ResL/k(V )) ⊆ ResF/k(V ),

(b) VF = Z[G]F ⊗Z V (see following sections).

To handle this intricate definition, let’s consider our two “quadratic” examples. In this
framework (taking L = F ) we have d = 2, Φd(σ) = σ + 1 = NL/k, and Ψd(σ) = σ − 1.

Example 3.1.3 ((Gm)L with quadratic L). Let then V = Gm. The image of σ under the
map (3.11) is σL/k,Gm

∈ Endk(R), recalling that R = ResL/k(Gm) described as before. More
explicitly,

σL/k,Gm
(x1, x2, y) = (x1,−x2, y). (3.13)

Moreover, after a few calculations, we write

Φ2(σ) = (NL/k)L/k,Gm
= (σ + 1)L/k,Gm

: R −→ R (3.14)

as

Φ2(σ) :

(
x1, x2,

1

x21 −Dx22

)
7−→

(
x21 −Dx22, 0,

1

(x21 −Dx22)
2

)
; (3.15)

while RL/k/k,Gm
: R −→ Gm is given by

RL/k/k,Gm
:

(
x1, x2,

1

x21 −Dx22

)
7−→

(
x21 −Dx22,

1

x21 −Dx22

)
, (3.16)

and (NL/k · Φ2(σ))L/k,Gm
= (σ − 1)L/k,Gm

: R −→ R by(
x1, x2,

1

x21 −Dx22

)
7−→

(
x21 +Dx22
x21 −Dx22

,
−2x1x2
x21 −Dx22

, 1

)
. (3.17)

Then (Gm)L = (σ − 1)L/k,Gm
(R) = ker((σ + 1)L/k,Gm

), and (Gm)L is the sub–variety3 of
R ⊆ A3 defined by x21 −Dx22 = y. Also, notice that its k–points are the norm one elements of L
(viewed as vector space on k).

Example 3.1.4. (Elliptic curve E and quadratic L) Recalling ResL/k(E) = (E × E(D))/T, one

can show σL/k,E ∈ End(E × E(D))/T ) and

σL/k,E : (P,Q) 7−→ (P,−Q). (3.18)

Moreover, to determine the image of E(D) into (E × E(D))/T , considering the inclusion of E
and its quadratic twist into (E × E(D))/T is enough. Applying the first definition leads to the
conclusion:

EL = ker((σ + 1)L/k,E) = (σ − 1)L/k,E((E × E(D))/T ) = E(D). (3.19)

3.2 Decomposition of groups rings

It is possible to construct a decomposition of ResL/k into primitive subgroups, starting from the
one of Q[Gal(L/k)] into direct sum of irreducible rational representations (for instance see [7]).

In this section we will assume that G is a finite abelian group. We will also consider the
group rings Z[G], Q[G], and C[G] and derive their decomposition. Beginning with the latter,
let’s consider the character group of G, namely Ĝ = HomC(G,C×).

2Notice that VF is independent on the choice of the field extension L.
3In the literature (Gm)L is also denoted by TL,k or T2, e.g. see [6].
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Proposition 3.2.1. (Decomposition of C[G]) Fix χ ∈ Ĝ, and let

eχ :=
1

|G|
∑
g∈G

χ(g)g−1 =
1

|G|
∑
g∈G

χ−1(g)g ∈ C[G]. (3.20)

Then

(i) e2χ = eχ;

(ii) if χ ̸= ψ, eχeψ = 0;

(iii)
∑
χ∈Ĝ eχ = 1G;

(iv) eχC[G] = eχC is a one–dimensional C–vector space;

(v) C[G] =
∑
χ∈Ĝ(eχ · C[G]) =

⊕
χ∈Ĝ(eχ · C[G]) =

⊕
χ∈Ĝ eχC, in other words C[G] is decom-

posable into a direct sum of irreducible rational representations.

Treating the cases of Q[G], and Z[G] is not as straightforward, indeed χ(g) does not belong
to Q in general, i.e. eχ ̸∈ Q[G].

Lemma 3.2.1. Denote GQ := Gal(Q̄/Q), let CG := {H ≤ G | G/H is cyclic}, RG be the set

of irreducible rational representation of G, and XG be the set of GQ–orbits of Ĝ. Then CG, RG,
and XG are in natural one–to–one correspondence.

Proof. Firstly, let’s prove the correspondence between CG and XG. If we fix H ∈ CG it is
sufficient to consider YH := {χ ∈ Ĝ | ker(χ) = H}, i.e. the annihilator of H in G, and notice
it is in XG. Vice versa, if Y ∈ XG, let HY :=

⋂
χ∈Y ker(χ); it follows that G/HY

∼= χ(G) is a

finite, and so cyclic, subgroup of C×. We then conclude HY ∈ CG.
Finally, let’s consider XG and RG. If Y ∈ XG, by definition

∑
χ∈Y eχ ∈ Q[G], and and G’s

action on
∑
χ∈Y (eχ)Q[G] is an irreducible rational representation ρY of G which belongs to RG.

Conversely, if ρ ∈ RG, we can decompose ρ over C into a direct sum of characters of G. From
the fact that ρ is rational and irreducible it follows that it corresponds to a single GQ–orbit of

Ĝ.

This result gives us the following

Proposition 3.2.2. (Decomposition of Q[G]) Using the above notations, if H ∈ CG and defining
eH :=

∑
χ∈YH

eχ ∈ Q[G], then

(i) e2H = eH ;

(ii) if H1 and H2 are two distinct elements of CG, eH1
eH2

= 0;

(iii)
∑
H∈CG

eH = 1G.

Moreover, if we define Q[G]H := eH ·Q[G], then it is a simple Q[G]–submodule of Q[G], and also
the unique irreducible rational representation of G contained in Q[G] having kernel H. Finally,
it hols

Q[G] =
⊕
H∈CG

(eH ·Q[G]) =
⊕
H∈CG

Q[G]H . (3.21)

Remark 3.2.1. If we consider the restriction Z[G]H := Q[G]H ∩Z[G], from the fact that it is a
sub–module of Z[G] follows it is also a free Z–module.
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We can now finally prove an important auxiliary result.

Lemma 3.2.2. Suppose G is a finite abelian group, H ∈ CG, σ ∈ G is such that σH is a
generator of G/H, d = |G/H| and NH :=

∑
h∈H h. Then

(i) Z[G]H = NH ·Ψd(σ) · Z[G] ∼= Z[x]/(Φd(x)),

(ii) Z[G]H ⊗Z Q = NH ·Ψd(σ) ·Q[G] = Q[G]H ,

(iii) rankZ(Z[G]H) = φ(d), where φ(·) is the Euler totient function;

(iv) Z[G]⊗Z Q = Q[G] =
⊕

H∈CG
(Z[G]H ⊗Q);

(v) Z[G]/
⊕

H∈CG
Z[G]H is annihilated by |G|.

(vi) If G is also cyclic, of order n, and generated by σ (i.e. G = ⟨σ⟩), then we have

Z[G]H = Ψn,d(σ) · Z[G] = ker(Φd(σ)), (3.22)

where Φd(σ) is viewed as endomorphism of Z[G].

Proof. Call β = NH ·Ψd(σ). Consider a character χ ∈ Ĝ, if ker(χ) = H then

eχ · β · C[G] = eχ · C = eχ · eH · C[G], (3.23)

whereas if ker(χ) ̸= H then eχ · β · C[G] = 0 = eχ · eH · C[G] and so

β · C[G] = eH · C[G] = Q[G]H . (3.24)

Since NHQ[G] ∩ Z[G] = NHZ[G], and it follows that Z[G]/NHZ[G] is a torsion free Z–module.
Using the fact that the isomorphism of Z[G]–modules

πH : NHZ[G] −→ Z[G/H],

NH
∑
g∈G

agg 7−→
∑
g∈G

ag(gH) (3.25)

induces another isomorphism between torsion–free Z–modules (Ψd is indeed monic):

NHZ[G]/βZ[G] −→ Z[G/H]/Ψd(σH)Z[G/H] ∼= Z[x]/(Ψd(x)). (3.26)

By the exact sequence

0 −→ NHZ[G]/βZ[G] −→ Z[G]/βZ[G] −→ Z[G]/NHZ[G] −→ 0 (3.27)

one deduces that also Z[G]/βZ[G] is a torsion–free Z–module, and using (3.24) concludes

β · Z[G] = Z[G]H . (3.28)

Moreover, using πH we can write the following isomorphisms’ chain

βZ[G] −→ Ψd(σH)Z[G/H] −→ Ψd(x)(Z[x]/(xd − 1)) ∼= (Φd(x)). (3.29)

In conclusion we have proved points (i) and (ii). Furthermore, points (iii) and (iv) follow,
respectively, by the fact that rankZ(Z[x]/Φd(x)) = φ(d), and by applying (ii) and (3.21).
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Let’s now focus ourselves on the last two statements. If we fix α ∈ Z[G], then

|G| · α =
∑
H∈CG

eH |G|α ∈
⊕
H∈CG

Z[G]H ; (3.30)

thus
|G| · Z[G] ⊆

⊕
H∈CG

Z[G]H ⊆ Z[G] (3.31)

and we have (v). Finally, assuming G = ⟨σ⟩, we can consider its action (which is actually a
multiplication by x) on Z[x]/(xn − 1). From

Ψn,d(x) = (1 + xd + x2d + · · ·+ xn−d)Ψd(x) (3.32)

it follows that Ψn,d = NHΨd(σ), and using (i) we also have

Z[G]H = Ψn,d(σ)Z[G] ∼= Ψn,d(x)(Z[x]/(xn − 1)). (3.33)

Notice that the latter is the kernel of multiplication by Φd(x) in Z[x]/(xn−1), and so Ψn,d(σ)Z[G]
is the kernel of multiplication by Φd(σ) in Z[G].

3.3 Another viewpoint on primitive subgroups

Consider, as always in this section, L/k a finite abelian extension, G := Gal(L/k), and k ⊆ F ⊆
L, with F/k cyclic, d = [F : k], and H := Gal(L/F ). In order to remember the intermediate field
fixed by the Galois group that determines the sub–module, let’s denote

Z[G]F := Z[G]H and Q[G]F := Q[G]H . (3.34)

Suppose that V is the usual commutative, algebraic group over k. If we consider Z[G]F as a
Gk–module, then Z[G]F ⊗Z V is also a commutative algebraic group over k.

Assuming k ⊆M ⊆ F, and letting

RF/M/k : Z[Gal(F/k)] −→ Z[Gal(M/k)] (3.35)

be the projection map of RF/M/k,V ∈ Homk(ResF/k(V ),ResM/k(V )).

Proposition 3.3.1. With the same assumptions of theorem 3.1.1, we have that

Z[G]F ⊗Z V = βL/k,V (ResL/k(V )), (3.36)

where βL/k,V = NL/F ·Ψd(σ) ∈ Z[G]. In other words, points (a) and (b) of of theorem 3.1.1 are
equivalent.

Proof. From lemma 3.2.2 we deduce the diagram Since ker(β) ⊆ Z[G], it is torsion–free, and

therefore it is also a free Z–module. By Theorem B.1.1, it is induced the following diagram that
shows Z[G]F ⊗Z V = βV (ResL/k(V )) = βL/k,V (ResL/k(V )).
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Now we can finally prove the following important results.

Proposition 3.3.2. VF is isomorphic over F to V φ(d).

Proof. As said before, Z[G]F is a free Z–module of rank φ(d) and GF acts trivially on Q[G]F ,
so we conclude Z[G]F ∼= Zφ(d) as Z[GF ]–modules. Finally, the thesis follows from point (v) of
Theorem B.1.1.

Proposition 3.3.3. The algebraic varieties ResL/k(V ) and
⊕

k⊆F⊆L
F/k cyclic

VF are k–isogenous, via

isogenies whose kernels are annihilated by |G|.
Proof. Let’s use lemma 3.2.2 and point (v) of theorem B.1.1 when O = Z, I = Z[G], and
{Ji} = {Z[G]F }. Then, inclusions 3.31 induce a sequence of isogenies

ResL/k(V ) −→
⊕

k⊆F⊆L
F/k cyclic

VF −→ ResL/k(V ). (3.37)

We conclude noticing that the composition of the above two is, indeed, the exponentiation to
the power of |G|.

Let’s see now some special examples of primitive subgroups.

Trace zero subgroups

In the usual framework, and also assuming d = [F : k] is a prime, from theorem 3.1.1 follows that
VF is the norm one subgroup of ResF/k(V ) if the group law on V is viewed multiplicatively. While,
in the additive notation, it is the trace zero subgroup4. Moreover, ResF/k(V ) is k–isogenous to
V × VF .

Decomposition of ResL/k(Gm)

Considering our first example (recall L/k is quadratic and R = ResL/k(Gm) ⊂ A3) we have that
the decomposition (up to isogeny) of R intoGm×(Gm)L is explicitly given by the homomorphism

Gm × (Gm)L −→ ResL/k(Gm)

((x, y), (a, b, 1)) 7−→ (xa, xb, y2). (3.38)

Le latter has a rank 2 kernel generated by

{((1, 1), (1, 0, 1)), ((−1,−1), (−1, 0, 1))}. (3.39)

As proved in proposition 3.3.3, the composition of (3.38) with

ResL/k(Gm) −→ Gm × (Gm)L

(x1, x2, y) 7−→ ((y−1, y), ((x21 +Dx22)y, 2x1x2y, 1)) (3.40)

gives the squaring map (G has indeed order 2).

4More details about trace zero subgroups can be found in [8].
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3.3.1 Algebraic tori over finite fields

Consider again V = Gm. The following result concerns algebraic tori on finite fields (case of
most relevance in cryptography) and provides a better understanding of the relevance of the
above dissertation in the cryptography’s framework.

Proposition 3.3.4. Suppose k = Fq, L = Fqn and F = Fqd , where q is a prime and d a divisor
of n. Then:

(i) (Gm)F (k) ⊆ F×;

(ii) the group (Gm)F (k) is isomorphic to the subgroup of F× of order Φd(q);

(iii) if v ∈ (Gm)F (k) and v has a prime order not dividing d, then for all proper intermediate
fields M , in symbols k ⊆M ⊂ F , we have v ̸∈M.

Proof. Point (i) follows directly by theorem 3.1.1. Call σ ∈ G := Gal(L/k) = Gal(Fqn/Fq) the
element that induces Frobenius endomorphism x 7→ xq. Then, the map (3.11) becomes

Z[G] −→ Endk(ResL/k(Gm))

n−1∑
i=0

aiσ
i 7−→

{
v 7→ v

∑
aiq

i
}

(3.41)

Moreover,
(Gm)F (Fq) = ker(Φd(σ)L/k,Gm

) = ker(v 7→ vΦd(q)), (3.42)

the latter is a subgroup of F×
qd

of order Φd(q), and so e have (ii). For the last statement see

Lemma 1 of [9].

In some literature, e.g. [6], the primitive subgroup (Gm)F
qd

is denoted Td, so we shall adopt
this convention.

Remark 3.3.1. Notice that by proposition 3.3.3 and (3.3) follows that F×
qd

can be seen as

“almost isomorphic” to
⊕

d|n Td(Fq). Thus, cryptography in F×
qn — intended as crypto–system

sophistication — reduces5 to cryptography in primitive subgroups Td(Fq) (for the divisors d of
n). In particular, the first point of previous proposition shows how attacks (e.g. index calculus
attacks as those described in [10]) to discrete log problem in F×

qd
can be used to attack Td(Fq).

The last point of proposition 3.3.4 implies that, in order to attack the primitive subgroup Td,
one can’t reduce to the multiplicative group of a sub–field of Fpn , he has to deal with the whole
group, i.e. a lot of complexity. This suggest how the subgroup Tn(Fq) ⊆ F×

qn (of order Φn(q))
is, from this prospective, the most cryptographycally secure.

3.4 Conclusion

The construction of the previous sections, shows how the security of a discrete log–cryptosystem
in V (Fqn), where V is a commutative algebraic group over Fq, reduces to those of its primitive
subgroups VF

qd
(Fq), — with d divisor of n.

5Remember what discussed in remark 2.2.1 for El Gamal cryposystem.
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In other words, if primitive subgroups are vulnerable by index calculus attacks, then theoret-
ically the whole system is vulnerable, as happens to El Gamal cryptosystem if (p− 1) is smooth
enough.

Starting by this observation, there have been a few attempts of attacks in the case of abelian
varieties and elliptic curves [11].

Moreover, we saw that makes sense to think about VFqn
as the most cryptographycally secure

of the subvarieties. With the sake of computational efficiency, one is therefore induced in defining
a cryptosystem only upon VFqn

(instead of the whole V ). For instance in the one–dimensional
case, since dim(VFqn

) = φ(n) dim(V ), we can represent elements in VFqn
using only a single point

in (Fq)φ(n).



Appendix A

Miscellanea on computability

We briefly summarize here some definitions and results that we use in Chapter 2. For further
readings we also suggest [1], and [12].

A.1 Complexity and one–way functions

A (total) function f : Nn → N is said to be computable if there is algorithm (that is, a procedure
that always terminates) A that upon input (x1, ..., xn) outputs f(x1, ..., xn).

Definition A.1.1. The time of an algorithm for input (x1, ..., xn) is the number of steps that
the algorithm takes to produce the output.

We represent the time of an algorithm as a function of the input size

η =

n∑
i=1

|xi| where |xi| = ⌈log2(xi + 1)⌉ (A.1)

(i.e. |xi| is the number of bits required to write xi > 0) and use asymptotic O(·) notation.

Remark A.1.1. In this work, contrary to what it is common in algorithmic complexity, the
time–cost of the arithmetic operations and predicates over integers is not constant (since we will
require arbitrary large integers and not just 64bits integers).

Assuming x, y ∈ O(η), the cost of arithmetic operations and predicates is the following:

• f(x, y) 7→ x± y ∈ O(η),

• f(x, y) 7→ x · y ∈ O(η2),1

• f(x, y) 7→ x÷ y ∈ O(η2) (integer division),

• f(x, y) 7→ x mod y ∈ O(η2),

• f(x, y) 7→ x ≤ y ∈ O(min(|x|, |y|)).

Definition A.1.2. A function f : Nn → N is said to be computable in polynomial time
(or that f can be computed efficiently) if and only if there exists an algorithm A and a
polynomial p such that

1Although this can be made more efficient with Discrete Fourier Transformation.

21
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i) A computes f ;

ii) Time(A(x1, ..., xn)) ∈ O(p(η)).

In this case, for simplicity, we will also say that f is PT–computable or PT.

Definition A.1.3. A function f : N → N is said to be one–way if:

i) it is injective;

ii) it is computed in polynomial time;

iii) its inverse is not computed in polynomial time;

iv) it’s honest, that is if |f(x)| ∈ O(|x|n) and |x| ∈ O(|f(x)|n′
) for some constants n and n′.

Example A.1.1. If we define the PT bijection f : N → N as following

f(m) :=

{
log2m, if m is a power of 2,

the ’next free’ odd number, otherwise.
(A.2)

It’s easy to realize that f is not honest, since for even numbers f(x) we have |x| ̸∈ O(|f(x)|n′
)

for any constant n′.

A.2 P and NP
Definition A.2.1. We call P the family of the set A whose characteristic function χA can be
computed in polynomial time.

Example A.2.1. In 2002 was proved that the set of prime numbers is in P.

Definition A.2.2. The set A ∈ Nn is in NP if exists B ∈ Nn+1 such that

i) B ∈ P,

ii) if (x,w) ∈ B then |w| ∈ O(p(|x|)) for some polynomial p, where x ∈ Nn and w ∈ N;

iii) x ∈ A if and only if ∃w such that (x,w) ∈ B (if x ∈ A, such w is called a witness of x in
A).

It is an easy exercise to show that P ⊆ NP; proving or refuting the other inclusion is, maybe,
one of the most challenging problems of modern mathematics. The problem P = NP can be
stated in two forms:

Conjecture A.2.1 (Decision version). If A ∈ NP then A ∈ P, i.e. it’s characteristic function
can be computed in polynomial time.

Conjecture A.2.2 (Search version). If A ∈ NP, let B ∈ P a set suitable for definition A.2.2,
than there exists a polynomial-time function g : Nn → N such that x ∈ A if and only if
(x, g(x)) ∈ B. In other words if I can find quickly a witness for any element of A.

The above two formulations are actually equivalent, the proof is easy and quite instructive:

Theorem A.2.1. The decision version (DV) and the search version (SV) of the P = NP
problem are equivalent.
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Proof. (SV ⇒ DV) obvious: given x, compute in PT g(x) and x ∈ A ⇔ χB(x, g(x)) = 1 (also
computable in PT) where B is the correspondent to A, as in the above definition.

(DV ⇒ SV) We can then compute in PT the characteristic function of any set in NP. Let’s
define

C := {(x, p) : x ∈ A and p is the prefix of w such that (x,w) ∈ B}, (A.3)

we are wlog thinking w ∈ N in its binary representation. Since

D := {(x, p, w) : (x,w) ∈ B and p is a prefix of w} (A.4)

is in P (because χB is PT) we have that C ∈ NP, and so χC is PT. Then, we can compute g
with2 Algorithm 1, that runs in PT because both χC and χB do and |w| ∈ O(p(|x|)).

Algorithm 1 Given x, compute g(x), the search function, in PT.

Include: χC , χB
Input: x

w = ε {ε is the empty–string}
if χC(x,w) == 0 then
return w {x ̸∈ A}

else
while χB(x,w) == 0 do
if χC(x,w.0) == 1 then
w = w.0

else
w = w.1

end if
end while

end if
return w

Theorem A.2.2. If there exists a one–way function then P ≠ NP.

Proof. Let’s prove the counternominal; let’s assume P = NP and show how to compute the
inverse of any PT function f in PT. As before, define

C := {(y, p) : p a prefix of f−1(y) in binary} (A.5)

which is in NP because projection of

B := {(y, p, x) : f(x) = y and p is a prefix of x}. (A.6)

We can then run Algorithm 2 in PT, and so we deduce that can’t exist one–way functions.

2In this context, with the dot notation we indicate the string concatenation.
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Algorithm 2 Compute the inverse of f in PT.

Include: χC
Input: y

x = ε {ε is the empty–string}
if χC(y, x) == 0 then
return x {y has no preimage.}

else
while f(x) ̸= y do
if χC(y, x.0) == 1 then
x = x.0

else
x = x.1

end if
end while

end if
return x



Appendix B

Algebraic groups

B.1 General construction of I ⊗O V

Here we briefly enunciate some definitions1 and results about tensor product I ⊗O V , following
the same line as [4]. The scope is simply to fix some notations and ideas, not to give a complete
description of the setting.

Let ks be a separable closure of the field k, and denote Gk := Gal(ks/k). We also assume
that V is a commutative algebraic group over k, while O is a commutative ring2, and I is a
free O–module with a finite rank and a continuous right action of Gk defined on it. The last
assumption we make is the presence of a ring homomorphism O → Endk(V ), so that we can
regard O as a free rank one O–module with trivial Gk–action.

Definition B.1.1. Let’s fix an O–module isomorphism j : Or → I, where r is I’s rank as an
O–module. If cI ∈ H1(k,Autks(V

r)) is the image of the homomorphism

γ 7→ j−1 ◦ jγ , (B.1)

under the composition induced by the homomorphism O → Endk(V ). Then, we denote I ⊗O V
the I–twist of V , i.e the twist of V r by the cocycle cI (see Section 3.1 of [13]). In other words,
I ⊗O V is the only commutative algebraic group over k with the ks–isomorphism

ϕ : V r −→ I ⊗O V, (B.2)

such that
cI(γ) = ϕ−1 ◦ ϕγ , for every γ ∈ Gk. (B.3)

Example B.1.1. (Powers of V ) Taking I = Zr with trivial Galois action, and j as the identity
map on Zr, we find that the cocycle cI is trivial, and therefore we can take ϕ as the identity
map on V r. Applying the above definition we get Zr ⊗Z V = V r, and in particular V = Z⊗Z V.

Other two interesting examples in our contest are:

1This concept can be introduced in different ways, an alternative definition (equivalent to the one we give
when they are comparable) can be found in the Appendix to [4].

2In the cases we consider there will always be O = Z.
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Example B.1.2. (Restriction of scalars) Taking L/k a finite Galois extension, one have that
Z[G]⊗Z V = ResL/k(V ), where G := Gal(L/k). Indeed, the isomorphism

j : ZG −→ Z[G]

(ag)g∈G 7−→
∑
g∈G

agg
−1 (B.4)

induces an L–isomorphism ϕ : V G −→ Z[G]⊗Z V. Finally, the composition between ϕ−1 and the
projection on the identity component of V G (in symbols πidG : V G → V ) gives a homomorphism
that satisfies the universal property of ResL/k(V ).

Example B.1.3. (Quadratic twists of Gm) Let’s consider V = Gm the multiplicative group, and
use the notations introduced in Chapter 3. Being (Gm)L its primitive subgroup, we consider the
isomorphism

ϕ : Gm −→ (Gm)L

(x, y) 7−→
(
x+ y

2
,
x− y

2
√
D
, 1

)
(B.5)

and therefore we find that cI(γ) = ξL(γ) = ϕ−1 ◦ ϕγ . Thus I ⊗Z Gm
∼= (Gm)L.

Others examples can be found in Section 3 of [5]. We conclude this section with some
properties, whose proof can also be found in [4].

Theorem B.1.1. With the above assumptions and notations, the variety I ⊗O V is a commu-
tative algebraic group over k such that:

(i) I ⊗O V is functorial in both V and I.

(ii) For all commutative k–algebras A, and all Galois extensions F of k for which GF acts
trivially on I, we have that

(I ⊗O V )(F ⊗k A) ∼= I ⊗O (V (F ⊗k A)) (B.6)

and
(I ⊗O V )(A) ∼= (I ⊗O (V (F ⊗k A)))Gal(F/k), (B.7)

where the right-hand sides are the usual tensor products of O–modules.

(iii) Let W also be a commutative algebraic group over k and J a free O–module of finite rank
and a continuous right action of Gk. Then, there is a natural Gk–equivalent O–module
isomorphism:

HomO(I,J )⊗O Homks(V,W ) −→ Homks(I ⊗O V,J ⊗O W ) (B.8)

whose restriction to a homomorphism of O–modules is

HomO[Gk](I,J )⊗O Homk(V,W ) ↪→ Homk(I ⊗O V,J ⊗O W ). (B.9)

(iv) If F/k is a separable extension, J a free O–module of finite rank and a continuous right
action of Gk, and also I and J are isomorphic as O[GF ]–modules, the the commutative
algebraic groups I ⊗O V and J ⊗O V are isomorphic over F .

(v) If F/k is a separable extension, and the action of GF on I is trivial, then I ⊗O V is
F–isomorphic to V rankO(I).
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(vi) If 0 → I → J → K → 0 is an exact sequence of free O–modules of finite rank and with a
continuous right action of Gk, then the induced sequence

0 −→ I ⊗O V −→ J ⊗O V −→ K⊗O V −→ 0 (B.10)

is an exact sequence of commutative algebraic groups over k.

(vii) If I,J1, . . .Jt are free O–modules of finite rank with a continuous right action of Gk, and
I ⊗Z Q ∼= ⊕ti=1(Ji ⊗Z Q) as O[Gk]–modules, then

I ⊗O V is k–isogenous to

t⊕
i=1

(Ji ⊗O V ). (B.11)
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