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Notation

Here is a summary of the most common notations and conventions used throughout this work.

The nonzero elements of Z,, and F,, are respectively denoted by Z, and F .
When finite fields are considered, the characteristic is different from 2.

Let x € R, the smallest integer grater than x is [« ], while the bigger integer less than x is
[z].
The Euler totient function is indicated by ¢(+).

If the element a is randomly chosen from the set X, we will write a € X.

Let G be a group acting on X by conjugation, we adopt the exponential notation, i.e. the
action of g € G over x € X is a9.

If R is a commutative ring, and G a finite group, we denote the group ring as R[G] :=
{2y ag9 | ag € R}

We use ®4(x) € Z[z] to indicate the cyclotomic polynomial whose complex roots are the
primitive d-roots of unity.

If d is a positive divisor of N, we denote

and

Let R be a ring, while M and N respectively a right and left R— module; we denote M ®p N
the tensor product of M and N.



Chapter 1

Introduction

In this work, we recall a few basic concepts about cryptography, such as the definition of a
cryptosystem, and the difference between private and public—key encryption. We will then focus
on the latter, in particular on discrete log—cryptosystems. The former example is the system
introduced by Taher Elgamal in 1985, which is indeed based on the difficulty of finding the
logarithm modulo a prime in polynomial time. In particular, we prove how the security of FEl
Gamal cryptosystem also depends on the choice of the chosen prime p (in particular on (p — 1)
factorization).

Discrete log problem can be formulated in an analog guise for a generic group; following
Elgamal’s construction leads to a generalization of the former case which keeps the denomination
of discrete log—cryptography.

We conclude Chapter 2 with a particular example of a discrete log—cryptosystem that arises
by choosing, as the group in the above—mentioned definition, an elliptic curve over a finite field.
The Elliptic Curve Cryptosystem (ECC) is, actually, one of the most used (e.g. in Bitcoin
signatures), and therefore of big interest in modern research.

There are also recent examples of discrete log—cryptosystems defined over an abelian variety,
in particular over the Fy—points of the variety (e.g. the multiplicative group Gm).

It is then interesting, also in order to study the security of the system, the study of its
algebraic structure. We will see how this leads to the definition of a primitive subgroup of an
algebraic group.

More explicitly, considering V', an algebraic group over k, the algebraic variety obtained with
the Weil restriction of scalars of V' from L to k (where L is a finite abelian extension of k)
is isogenous to the direct sum of primitive subgroups of V. In other words, the security of a
cryptosystem defined on V' actually relies on the security of the restriction in those subgroups.



Chapter 2
Cryptography bases

In this chapter we introduce a few basic concepts concerning cryptography, with the seek of giving
a general understanding of the topic, and without the pretense of being either self contained or
complete (for further readings see [1]).

After giving the definition of a cryptosystem, we briefly talk about the difference of symmetric
ones respect to the asymmetric. Then, we concentrate on the latter case (the more interesting,
especially nowadays), and in particular on examples of discrete log—based cryptosystems. These
particular cases are widely studied for themselves, because of their wide application. However,
at present are being studied some generalizations which use advanced abstract algebra (and not
only). In this work we will present an example that relies on primitive subgroups of an algebraic

group.

2.1 Basics definitions

Suppose Alice and Bob are two friends who want to communicate through a (public) channe]ﬂ
but ensure that their secret are safe from an evil Eve who can possibly intercept the message
they shared.

The natural method they can adopt is to agree on an invertible procedure to convert their
messages into other strings, and send the latter in the channel. This lead to:

Definition 2.1.1. A cryptosystem is a tuple (X, ), K, e, d) where:
e X is a finite set of plaintexts;

e ) is a finite set of ciphertexts;

K is a finite set of keys;

e={er : X = V}rex is a family of encryption maps;

d={dg : X = Y}rek is a family of decryption maps;
such that for all £k €
di(eg(z)) = x. (2.1)

1More precisely, a channel that could be eavesdropped, but in which the receiver always knows, with certainty,
who sent a message.
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In practical cases the sets considered are often numerical ones, those are put in correspondence
with strings by opportune functions.

Ezample 2.1.1. (Hill cryptosystem) Take for instance H = (X, Y, K, e, d) of the form: X =) =
(Z,)™, the keys K = GL,,(Z,), i.e. the general linear group of m x m matrices which are
invertible modulo n, ex(x) = k -z, and di(y) = k=1 - y.

2.1.1 Private—key cryptosystems

A crucial step in the above procedure, is sharing the key (or the keys) before beginning the
communication. If the exchange is done privately (e.g. in person) before, the cryptosystem
adopted is a private—key one, and is also said symmetric.

It is know that, provided choosing a suitable key—set, a symmetric system is perfectly secure,
i.e. there are no attacks that Eve can attempt only based on knowing the ciphertext (this is why
symmetric cryptosystems are also employed in military framework). Despite not being a central
topic in this work, and therefore can be ignored, the proof of this classical result is discussed in
the next subsection.

Shannon’s theorem

In this section we consider a probabilistic experiment defining X and K, two independent random
variables with values respectively in X and K, i.e.

P(X=2AK=k)=P(X =2)P(K =k). (2.2)

Notice that these two random variables defines a third one, namely V := e(K,X) : Q@ — ).
Moreover, we will assume P(X = z) > 0 and P(Y =y) > 0. Since

PY=y|X=x)=PKe{k:e(z)=y}) (2.3)
we have
PY=y)=> PV =yAX=2)=)» PY=y|X=2)PX=ux) (2.4)
zeX zeX
= P(K € {k:er(x) =y})P(X = 2). (2.5)
reX

Definition 2.1.2. A cryptosystem is said Shannon perfectly secure if X and Y are inde-

pendent, i.e.
P(X=2|Y=y)=PX =uz). (2.6)

In other words, the perfect security we can aspire to is finding an encryption method which
leads to a ciphertext that doesn’t reveal anything about the original secret.

Theorem 2.1.1. Let (X, Y, K, e,d) be a cryptosystem such that |X| = || = |K|, let’s consider
the above probabilistic experiment, and assume

e X and K are independent,
e P(Y=y)>0forallye ).
Then the cryptosystem is perfectly secure if and only if

(i) For all z € X and y € Y, 3'k such that eg(z) =y, (we denote it as k).
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(ii) P(K =k) =1/|K|.
Proof. First of all, notice that (i) implies
kyy = kyry < eitherx =2’ Ay =y orx #2' Ny #y. (2.7)
(<) Let’s verify the definition

B . PX=xAY=y) @ P(X=x2ANK e{k:ep(z)=y})
P = =Ty =y T S PR e e =P =) Y

P(X = 2)P(K = kyy) (3) P(X =x)1/|K|

= (2.9)
Yiwen P = ke ) P(X =a")  1/IK]- 3 cp P(X = 2')
=P(X =uz). (2.10)
(=) Fix and = and notice that for all y € Y
0<PY =9) PV =y| X =2) B P(K € (& : en(z) = y}), (2.11)
so for all z and y the set {k : ex(z) =y} # . We deduce that for each z the functions
fo : K=Y (2.12)
kE —y:=er(x) (2.13)
are surjective and, since |[K| = ||, also injective, i.e. we have proved (i).
(i) implies {k : ex(x) = y} = {ksy} for all (z,y), moreover from above follows that
P(K =kyy) = P(K =kyy) =PY =y) >0, forallz,z’ X (2.14)
and so, fixing y and using (2.7), we have:
koy = kory & x =1/, (2.15)
and so the function g, : X — K s.t. gy(x) = kg, is injective (and also bijective).
We deduce
1=) PX=2)=) PX=x|Y=y)=) PK=g,)= (2.16)
TeEX reX zeX
=Y P(K =kyy) = |X|P(Y =y) (2.17)
reX
and, since |X| = |K|, we can conclude
P(K =k)=P(Y =y)=1/|K|. (2.18)
O

2.1.2 Publickey cryptosystems

In the years, modern practical applications required the possibility to privately communicate
(e.g. by email or WhatsApp) with people without sharing symmetrically a private key before.

The problem was solved by Diffie and Hellman who proposed the following DH-scheme |[2],
based on the assumption that there are certain algebraic functions and problems (see appendix
for basic definitions) that are computationally easy to solve, but their inverse is not.
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The DH-scheme uses two keys (a private and a public one) that are mathematically related
to each other. The strength of security lies in these keys’ properties since it is computationally
infeasible to calculate one key using the other. Each sender and receiver will have their private-
public key pair in this system.

More explicitly, if Alice wants to send a message to Bob, she will need to use his public key
to encrypt the message, and Bob will decrypt the message using his private key. In practice,
when we communicate only, we share a key in a asymmetric way and then we use the latter to
continue the encryption symmetrically.

A rigorous definition of the above procedure is the following:

Definition 2.1.3. The family {X,),K,e,d,u,U} is an asymmetric cryptosystem with se-
curity parameter n = || if

(i) u: K — U is a PT publication function u(k), called public key of k.

(ii) The family {e ) : X = V}o is a one-way family with trapdoor k.

)
)
(iii) dp(eym)(z)) == for all z € X.

)

(iv) it should be efficient to sample K as |6| grows.

The fourth condition imposes that it should be easy to sample a random key for each param-
eter 6.

Ezample 2.1.2 (RSA). The following system is widely adopted and known; it is based on the
hardness of finding the square roots modulo 8 = n = pq, with p and ¢q large primes. It is easy to
show, indeed, that this problem is as difficult as factoring n.

Taking X =Y =Z,, K ={(a,b) : ab=1 mod ¢(n) = (p—1)(¢— 1)}, u(a,b) = a, and

a

ea() =2 modn, and dyu)(y) = y* mod n (2.19)

The idea is simply using the fact Z,, = Z, x Z4 and so

z=(a,b)=0 modn=pg <= a=0 modp, and b=0 mod g (2.20)

2.2 Discrete log—cryptography

Now, we focus on a particular class of public—key cryptosystems, which takes inspiration by El
Gamal, who first introduced a scheme based on the hardness of finding the discrete logarithm
modulo a large prime. We will first look at this remarkable example, and then see an analog
problem related to elliptic curves.

2.2.1 EIl Gamal system

It is well known, and also easy to show, that the following problem is, in general, in the NP
class. In fact, it has been showed that for a lot of primes it is actually in P.

Problem 2.2.1. Let p be a prime, a a generator of Z; and 8 € Z, . Find 0 < a < p — 2 such
that
a® =L mod p. (2.21)

As anticipated, the security of the following one is based on the (assumed) hardness of problem

ZZ1
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Definition 2.2.1. Let p be a prime for which the discrete log problem is hard (e.g. p = 2¢+1 with
g a large prime) and « a public known primitive element of Z, . The El Gamal cryptosystem
is defined taking

e X =7 (plaintext space);

Y =17} x Z) (ciphertext space);

K ={(a,B): a* = 8} (key space)

e u: K — Z) with u(a, ) = B the publication map;

o eg(z) = (y1,y2) == (¢ mod p, " mod p) where r €g Z,_; is randomly taken;

o diap)(y1,y2) = y2(yf) ™" mod p.

The above condition on the prime p, follows from various attacks that Eve can attempt, in
particular trying to factor p — 1. In the following subsection we present an example of attack,
which offers a connection with a more general case that we will encounter in Chapter 3.

Pohlig—Hellman theorem

The key observation to perform the following attack is that if p — 1 is a product of prime which
are “small enough”, then El Gamal is vulnerable since we can compute the logarithm in the
single p—groups (see proof below for the algorithm). This also motivate the following:

Definition 2.2.2. A number is said to be n—smooth if the prime number in its decomposition
are not larger that n.

Theorem 2.2.1 (Pohlig-Hellman). If p is a prime such that (p — 1) is O(polylog(p)) — smoothﬂ7
then there is a polynomial algorithm to compute the discrete log of p.

Proof. Given («, 8) we want to compute a = log, 8 mod p, with p prime, and p— 1 =[]]_, ¢}
(with g; polylog bounded). Notice that a € Z,_1 = Z 1 X oo X Lges, SO it’s enough to determine
a mod ¢ fori=1,...,s.

Fix a i, by hypothesis e; € O(logp) and ¢; € O(polylog(p)). Moreover, since p —1 = 0
mod ¢;* and so we can write ¢ mod ¢;’ in base ¢; with at most e; symbols:

q

Eifl

a mod ¢;" = [ae;—1---a160]q;, = Z a;q’, (2.22)
j=1

Lemma 2.2.1. We have that ag is the element that satifies f@~1/% = o(P=Dao/s% od p.

Proof. Modulo p we have

; i —1 i o, —1 -1 -
(dqf%Z;;o ajqi)(pfl)/qi a(dq? +355 ajq] 1)(1)*1)0{?*1@ Lo

5(17—1)/% —a @ 1.0 %
(2.23)

O

2We write polylog(x) to indicate a polynomial evaluated in logz.
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So to determine ay it is sufficient to check the equality above for a € {0,...,¢—2}, remember
that the Power Mod can be computed in PT. Found aq, it’s sufficient to subtract a¢ from a
mod ¢;* and then divide by ¢; to apply recursively the lemma above. To compute the overall
complexity, notice

1) the number of primes s is clearly O(log(p)).
2) Each e; € (log(p)).
3) By hypothesis ¢; € O(polylog(p)) as p — 1 is polylog smooth.
So the overall complexity is polynomial in the number of bits of p. O

Remark 2.2.1. Notice that the above algorithm uses the fact that we can consider the singles
g;—groups to compute the discrete log. Thus, in this sense, we can say that the security of the
system depends on the dimension of those groups.

2.2.2 Elliptic curves discrete log problem

A natural generalization of El Gamal cryptosystem is the following:

Definition 2.2.3. Let (G,-) be a commutative group such that H is a cyclic subgroup with
order n, and generator . We take

e X = G (plaintext space);
e YV = H x G (ciphertext space);
K={(a,p):a*=p} CZ, x H (key space)

e u: K — H, where u(a,8) = § is the publication map;

e eg(z) = (y1,y2) with
- 1 €R Zy, is randomly chosen,
-y1=a", and yo = x[".

1

d(a,5)(y1,42) = y2(y) ™" mod p.

Now, since the following problem is considered to be hard, elliptic curves are a natural
candidate for a cryptosystem of this guise.

Problem 2.2.2. (Discrete log problem for elliptic curves) Let (E, +) be an elliptic curve defined
over F,,. Let then P € E be a generator of a large subgroulﬂ H in G, given Q € H, find m
integer such that mP = Q.

Given an elliptic curve E on [, (p a large prime), definition describes the so called
Elliptic curve cryptosystem or ECC (notice that in this case the notation is additive). ECC
is widely used in application, for example in the implementation of Bitcoin signature scheme. As
in El Gamal example, is proven that problem [2.2.2] is not always in AN'P, and there are attacks
analogue to Pohlig-Hellman’s one.

3A good introduction to elliptic curves, and in particular a proof that such a cyclic subgroup always exists can
be found in |3]
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Ezample 2.2.1. (Diffie-Hellman key agreement) Suppose Alice and Bob want to share a secret
using ECC. Let the public parameters of the system be the elliptic curve F, on F,, and the
subgroup generator P € E. Moreover, the two are both given a key, respectively (P,n4) and
(P,np), whose first part is public (is actually the generator) and the second is a private and
random integer (also said exponent).

If they compute respectively points Q4 := naG, and Qp := npG. The secret that they can
share (and later possibly use to encrypt their conversation) is the point S =npQa =naQp. In
fact, is sufficient that they send Q 4, and Qp to each other and multiply what received by their
private key. Notice that Bob can’t deduce n4 from @4 (unless solving problem , and vice
versa. In particular Eve, even intercepting the messages @4 and @p, has no (obvious) way to
find S.

Remark 2.2.2. A point that we haven’t stressed in this work, but is crucial, is that the opera-
tions in the procedure need to be computationally eﬂicieniﬁ

41f interested, the reader can find here| my implementation of ECC in PYTHON (but I suggest to look for better
ones).


https://github.com/dalcio99/CTF-cryptography/blob/main/CryptoHack/Elliptic_Curves/Efficient_exchange.py

Chapter 3

Twisting commutative algebraic
groups

In the previous chapter we described a few standard examples of discrete log—based cryptography,
in particular El Gamal and ECC. Now, we move to a more general framework, what are considered
in this setting are F,—points of the multiplicative group Gm, or the F,—points of an abelian variety
A over F, (usually an elliptic curve). Our scope is to show how discrete log-based cryptography
over extension fields can be reduced to cryptography in primitive subgroups; this generalization
was suggested in [4], and interesting examples were presented in [5].

3.1 Primitive subgroups

Despite applications are of course implemented over finite fields (in particular in the above two
cases), it is useful to work in a more general setting. Thus, in this section we will assume that
V' is a commutative algebraic group over a field k, and L is an abelian extension of k£ of finite
degree n, i.e. Gal(L/k) is commutative. We will also use some notation introduced in Appendix
B.

3.1.1 Well restriction of scalars

Restriction of scalars is a way to associate an algebraic variety X over L another variety
Resy, /i (X) over kﬂ

Definition 3.1.1. The restriction of scalars of V' from L to k is a commutative algebraic
group over k, that we denote Resy,/,(V), together with a homomorphism over L

NL/k - ResL/k(V) —V (3.1)
with the universal property that for every variety X over k, the map

Homk(X, ResL/k(V)) — HomL(X, V)
f—mnrmof (3.2)

is an isomorphism.

1Weil restriction of scalars variety actually represents a functor from k-schemes to sets but, for our purposes
and consistency, it is convenient to give a more practical definition.

11
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Remark 3.1.1. Notice that for every k—algebra A, by taking X = Spec(A) in condition (3.2]),
one finds that 7y, : (Resg/,(V))(A) — V(A ®y L) is an isomorphism. In particular

(Resp (V) (k) = V(L). (3.3)

To clear the above definition, consider the following.

Example 3.1.1. Let’s consider V as defined by a system of polynomial equations:
filzr,...,2.) =0, fi€Llxy,...,z;]for1<[<s. (3.4)

Fixing a basis {vi,...,v,} of the extension L over k, and introuducing new variables y;; ex-
pressing the combinations x; = Z?Zl Yi;V;, leads to a system of s equations in the rn unknowns
{i;}. The latter defines a n - dim(V')-dimensional variety over k which is in fact Resz (V).

As anticipated above, the aim of this chapter is to generalize discrete log—based cryptography
viewpoint to a more algebraic one. To this scope is convenient to introduce a couple of examples.

The multiplicative group and quadratic extensions

Assume D € k* is a non-square, let L = k(v/D), and G = Gal(L/k) with generator ¢. One can
consider the multiplicative group Gy, as the variety in A2 defined by the equations zy = 1. In
this case,

Proposition 3.1.1. Resy/;(Gm) is the variety R in A® defined by (27 — Da3)y = 1 with the
commutative operation

(1, 22,Y) G (W1, W2, 2) = (1W1 + Dxows, T1we + 2w, Y2). (3.5)
Proof. Define nr/; : R — G, as
(71, 22,y) = (21 + ICQ\/B, (1 — 562\/5)11) (3.6)

Given X a variety over k and ¢ € Homp (X, Gy,) we can define

Y4+ -y 1 )
= , , € Homg (X, R). 3.7
( 2 2D e HA ) 37
and also check that 7y, o 1% = 1. In this case, showing that the map (3.2)) is an isomorphism
follows from the fact that 5/ o f = f. O

Elliptic curves and quadratic extensions

Suppose E : y> = f(x) is an elliptic curve on k, thus deg(f) = 3, and that D € kX is a
non-square. As above, let L = k(v/D), and G = Gal(L/k) with generator .

The quadratic twist of E by D is the curve E(P) : Dy? = f(x), and the two are isomorphic
over L by

¢: E— ED)
(x,y) — (z,y/VD). (3.8)
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Proposition 3.1.2. With the above assumptions, Resy,/x(E) is (E x EP))/T, where
T :={(P,¢(P) € E x E®) : 2P = O} = ker(fo) Nker(]2]), (3.9)
where [2] is the multiplication by two in E, and

fo: ExEP & E
(P,Q)— P—¢1(Q) (3.10)

In this case n/x : (P,Q) — P+ ¢7(Q).

3.1.2 Definition of primitive subgroup

We conclude this section giving the definition of a primitive subgroup Vg of V and enunciating
some of his properties, whose proofs exile from the scopes of this script and can be find in [4].

As above, L/k is a finite abelian extension of k. Our aim is to associate to each intermediate
field F (i.e. K C F C L) such that F'/k is cyclic, a commutative algebraic group Vi over k.

Before giving the definition, we have to describe some context and notations. Let G :=
Gal(L/k), if g € G we have that 77%/1@ € Homp (Resy,(V'), V) and by (3.2) applied to Resy /5 (V),
exists a unique gz, v € Endg(Resy (V') such that 0z, 0 gr/pv = nz/k. Now we have the
correspondence g — gr /v, which can be linearly extended to a ring homomorphism: writing
a=3 ccagg (With ag € Z) and imposing

Z[G] — Endg(Resz/1(V))

Oé’—>OéL/k7V = ZaggL/kVV (311)
geG
Considering k-points and identifying (Resy,/,(V'))(k) with V(L) as in the remark if a =
> gec Ag 9 € Z[G], and v € (Resp/,x(V)) (k) = V(L) then ap kv (v) = [[ eq 9(x)*-
Ezample 3.1.2. The map (3.11)) is injective if the natural application Z — End (V') is injective.

For instance, taking V' = Gy, (or another abelian variety) leads to an injective map, while
V = ker[n] (with [n] the multiplication by n on an elliptic curve) does not.

Now, if k C M C F, let
Nepmei= Y, h  €Z[Gal(F/M)] C Z[Gal(F/k)]. (3.12)
heGal(F/M)

Theorem—Definition 3.1.1. Assume V is a commutative algebraic group over k, F' is a field
extension of k, and F/k is cyclic. Fix a generator 7 of Gal(F/k), and consider ®4(7), Uy(7) €
Z[Gal(F/k)] and ®q(7)p/k,v, Ya(T)p/k,v € Endg(Resp/,(V)) as above. Then, the following are
equivalent conditions and they define a primitive subgroup Vg, associated with the field F,
of the group V.

(i) Vi = ker(®a(7)r/k,v) C Respp(V),
(i) Ve = Mieay,, ker((Nea) prev) = mMeﬂ’F/k ker((Np/ar)r/e,v) € Respyr(V),

(i) Ve = Nareay,, ker(Beya/nv) = Mireay,,, ker(Remmy) S Resey(V),
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(iv) if FF C L, with L/k abeliarﬂ [L: k] =n, and 0 € G := Gal(L/k) such that its restriction
on Gal(F/k) is one of its generators, i.e. Gal(F/k) = (o|r). Then

(a) VP = (Nr/r - Va(0))r/k,v(Resp/x(V)) C Respyp(V),
(b) Ve = Z[G]r ®2 V (see following sections).
To handle this intricate definition, let’s consider our two “quadratic” examples. In this
framework (taking L = F') we have d =2, ®4(0) =0 +1= N, and ¥y(0) =0 — 1.
Ezample 3.1.3 ((Gp)r with quadratic L). Let then V = Gy,. The image of o under the

map (3.11) is o7 /x,q,, € Endg(R), recalling that R = Res/;(Gm) described as before. More
explicitly,

UL/k,Gm(xbl“z,y) = (w1, —22,Y). (3.13)
Moreover, after a few calculations, we write
Po(0) = (Nok)i/k,Gew = (0 + Dijkgnm - R— R (3.14)
o 1 1
) : Lo, ———— | — (22 — D220, ————— |; 3.15
o) (e g ) = (ot Db (349)
while Ry /k/k,G.. ¢ B — Gm is given by
R : 1 — (22 — Da2 ! (3.16)
L/k/k,Gm * | £1,%2, 22 — Dz Ty 25 22— Da3 ) .
and (NL/k . (I)Q(U))L/k,Gm = (U — l)L/k,Gm :R— R by
1 22 + Dx3  —2m129
—_—— 1). 3.17
(ml’xQ’z%D:@) — (z%Dx%’x%Dz%’ ( )

Then (Gm)r = (0 — 1)k, (R) = ker((0 + 1)1/k.Gm)s and (Gm)z is the sub—varietyﬁ of
R C A3? defined by 22 — Dx2 = y. Also, notice that its k—points are the norm one elements of L
(viewed as vector space on k).

Ezample 3.1.4. (Elliptic curve E and quadratic L) Recalling Resy,/,(E) = (E x EP))/T, one
can show o/, g € End(E x EWP))/T) and

orke (PQ) — (P, —Q). (3.18)

Moreover, to determine the image of E”) into (E x E())/T, considering the inclusion of E
and its quadratic twist into (E x E(P))/T is enough. Applying the first definition leads to the
conclusion:

Ep =ker((o +1)pip) = (0 — 1)1 /pp((E x BEP)/T) = EP). (3.19)

3.2 Decomposition of groups rings

It is possible to construct a decomposition of Resy /5, into primitive subgroups, starting from the
one of Q[Gal(L/k)] into direct sum of irreducible rational representations (for instance see |7]).

In this section we will assume that G is a finite abelian group. We will also consider the
group rings Z[G], Q[G], and C[G] and derive their decomposition. Beginning with the latter,

let’s consider the character group of G, namely G = Homg¢ (G, C*).

2Notice that Vi is independent on the choice of the field extension L.
3In the literature (Gm)y, is also denoted by Ty, or Ta, e.g. see [6].
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Proposition 3.2.1. (Decomposition of C[G]) Fix x € G, and let

ey 1= \G\ZX ZX 9)g € C[G]. (3.20)

geG gEG

)

(ii) if x # ¢, exey = 0;

(i) Y cqex = los

(iv) e,C[G] = e,C is a one-dimensional C—vector space;
)

(v) ClG] =3, calex  ClG]) = B, calex - ClG]) = D, exC, in other words C[G] is decom-
posable into a direct sum of irreducible rational representations.

Treating the cases of Q[G], and Z[G] is not as straightforward, indeed x(g) does not belong
to Q in general, i.e. e, & Q[G].

Lemma 3.2.1. Denote Gg := Gal(Q/Q), let Cg := {H < G | G/H is cyclic}, Rg be the set
of irreducible rational representation of G, and X¢ be the set of Gg—orbits of G. Then Cg, Rg,
and X are in natural one-to—one correspondence.

Proof. Firstly, let’s prove the correspondence between C¢ and Xg. If we fix H € Cg it is
sufficient to consider Yy := {x € G | ker(x) = H}, i.e. the annihilator of H in G, and notice
it is in X¢. Vice versa, if Y € Xg, let Hy := [, ¢y ker(x); it follows that G/Hy = x(G) is a
finite, and so cyclic, subgroup of C*. We then conclude Hy € Cg.

Finally, let’s consider X¢ and Rg. If Y € X¢, by definition }_ .y e, € Q[G], and and G’s
action on .y (e, )Q[G] is an irreducible rational representation py of G which belongs to Rg.
Conversely, if p € Rg, we can decompose p over C into a direct sum of characters of G. From
the fact that p is rational and irreducible it follows that it corresponds to a single Gg—orbit of
G. O

This result gives us the following

Proposition 3.2.2. (Decomposition of Q[G]) Using the above notations, if H € Cg and defining
en = ey, ¢x € Q[G], then
(i) e} = em;
(i) if Hy; and Hp are two distinct elements of Cq, en, ep, = 0;
(iil) > gec, e = la-

Moreover, if we define Q[G]y := ey - Q[G], then it is a simple Q[G]-submodule of Q[G], and also
the unique irreducible rational representation of G contained in Q[G] having kernel H. Finally,

it hols
QG = P (en-QG) = P QGIn. (3.21)
HeCg HeCg

Remark 3.2.1. If we consider the restriction Z[G] g := Q[G]y NZ]G], from the fact that it is a
sub—module of Z[G] follows it is also a free Z—module.
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We can now finally prove an important auxiliary result.

Lemma 3.2.2. Suppose G is a finite abelian group, H € Cg, 0 € G is such that cH is a
generator of G/H, d = |G/H| and Ny := ), .y h. Then

(i) Z[Glg = Np - Vq(0) - Z|G] = Zz] /(Pa(z)),
(i) Z[Gln ®z Q= Np - ¥a(0) - Q[G] = Q[Glx,
(i) rankz(Z[G)u) = ¢(d), where @(+) is the Euler totient function;
(iv) Z[G] @2 Q = Q[G] = D pyec, (Z[Gln ® Q);
(v) ZIG)/ D prec, ZIG)# is annihilated by |G].
(vi) If G is also cyclic, of order 1, and generated by o (i.e. G = (), then we have

Z|Glg = Wn.4(0) - Z[G] = ker(®a(0)), (3.22)
where ®4() is viewed as endomorphism of Z[G].
Proof. Call 8 = Ny - W4(c). Consider a character x € G, if ker(y) = H then
ey B-ClGl=e,-C=e, e C[G], (3.23)
whereas if ker(x) # H then e, - 8- C[G] =0 =e¢, - ey - C[G] and so
B-C[G] = en - C[G] = Q|G| x.- (3.24)

Since NgQI[G] N Z|G] = NyZ|G], and it follows that Z[|G]/NyZ|G] is a torsion free Z—-module.
Using the fact that the isomorphism of Z[G]-modules

T™H NHZ[G] *)Z[G/H],

Nu Y agg— Y ag(gH) (3.25)
geG geG

induces another isomorphism between torsion—{free Z-modules (¥, is indeed monic):
NuZIG)/BEIG) —> TG/ H) /Yoo HVZIG/H] = Zla] ) (Ua(x)). (3.26)
By the exact sequence
0 — NyZ|G)/BZ|G) — Z|G]/BZ|G] — Z|G])/NuZ|G] — 0 (3.27)
one deduces that also Z[G]/BZ[G] is a torsion—free Z-module, and using concludes
B-Z|G) =Z|G)x. (3.28)
Moreover, using 7 we can write the following isomorphisms’ chain
BLIG] — V(o H)ZIG/H] — Wa(z)(Z[z]/(x? — 1)) = (D4(2))- (3.29)

In conclusion we have proved points (i) and (ii). Furthermore, points (iii) and (iv) follow,
respectively, by the fact that rankz(Z[z]/®4(x)) = ¢(d), and by applying (ii) and (3.21)).
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Let’s now focus ourselves on the last two statements. If we fix o € Z[G], then

|G| o= Z e |Gla € @ Z|Glu; (3.30)
HeCg HeCg
thus
G- ZIG) € P ZIGlu < Z[G) (3.31)
HeCg

and we have (v). Finally, assuming G = (o), we can consider its action (which is actually a
multiplication by x) on Z[z]/(z™ — 1). From

U a(r) = (1 +a?+ 22+ 2" )y () (3.32)
it follows that ¥,, ¢ = Ng¥4(o), and using (i) we also have
ZIGly = ¥y 4(0)Z|G) 2 W, q(x)(Z]z]/ (2™ — 1)). (3.33)

Notice that the latter is the kernel of multiplication by ®4(x) in Z[z]/(z™—1), and so ¥,, 4(0)Z[G]
is the kernel of multiplication by ®4(0) in Z[G].
O

3.3 Another viewpoint on primitive subgroups

Consider, as always in this section, L/k a finite abelian extension, G := Gal(L/k), and k C F' C
L, with F/k cyclic, d = [F : k], and H := Gal(L/F). In order to remember the intermediate field
fixed by the Galois group that determines the sub—module, let’s denote

Suppose that V' is the usual commutative, algebraic group over k. If we consider Z[G]r as a
Gr—module, then Z[G]r ®z V is also a commutative algebraic group over k.
Assuming k C M C F, and letting

Rpjv  Z|Gal(F/k)] — Z[Gal(M/k)] (3.35)
be the projection map of Rg/a/k,v € Homg(Resp/r(V), Respr/i(V)).
Proposition 3.3.1. With the same assumptions of theorem we have that
ZIGlr @2V = Brjk,v(Respp(V)), (3.36)

where 31/, v = Np/p - ¥4(o) € Z[G]. In other words, points (a) and (b) of of theorem are
equivalent.

Proof. From lemma we deduce the diagram Since ker(5) C Z[G], it is torsion—free, and

0 —> ker(B) —> ZIG] —-> ZIG]r —> 0.

B
Z[G]

therefore it is also a free Z-module. By Theorem [B1.1] it is induced the following diagram that
shows Z[G]F Rz V = BV(RGSL/k(V)) = ﬂL/k,V(ReSL/k(V))- O
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0 —> ker(8) ®z V — Rest (V) —> ZIGlr @2V —>= 0

Resf (V)

Now we can finally prove the following important results.
Proposition 3.3.2. Vi is isomorphic over F to V#(4),

Proof. As said before, Z[G]F is a free Z—module of rank ¢(d) and G acts trivially on Q[G|F,
so we conclude Z[G]r = Z¥(d) as Z[Gr|-modules. Finally, the thesis follows from point (v) of
Theorem [B.1.1 O

Proposition 3.3.3. The algebraic varieties Resy (V') and @ xcrcr Vr are k-isogenous, via
F/k cyclic
isogenies whose kernels are annihilated by |G|.

Proof. Let’s use lemma and point (v) of theorem when O = Z,7 = Z|G], and
{T:} = {Z|G)r}. Then, inclusions induce a sequence of isogenies

Resz (V) — €D Vi — Respi(V). (3.37)

kCFCL
F/k cyclic

We conclude noticing that the composition of the above two is, indeed, the exponentiation to
the power of |G|. O

Let’s see now some special examples of primitive subgroups.

Trace zero subgroups

In the usual framework, and also assuming d = [F' : k] is a prime, from theorem follows that
VF is the norm one subgroup of Resp, (V) if the group law on V' is viewed multiplicatively. While,
in the additive notation, it is the trace zero subgroulfl Moreover, Resp /k(V) is k—isogenous to
V x VF

Decomposition of Res; ;(Gm)

Considering our first example (recall L/k is quadratic and R = Resy, /;,(Gm) C A®) we have that
the decomposition (up to isogeny) of R into G X (Gm) 1 is explicitly given by the homomorphism

Gm X (Gm)r — Resz/,(Gm)
((z,9), (a,b,1)) — (za,xb,y?). (3.38)
Le latter has a rank 2 kernel generated by
{((1,1),(1,0,1)), (=1, =1), (= 1,0, 1)) }. (3.39)
As proved in proposition the composition of with
Res/k(Gm) — Gm X (Gm)L
(21, 22,9) = (v, ), (2] + Da3)y, 2x122y, 1)) (3.40)
gives the squaring map (G has indeed order 2).

4More details about trace zero subgroups can be found in [8].



3.4 Conclusion 19

3.3.1 Algebraic tori over finite fields

Consider again V = Gy,. The following result concerns algebraic tori on finite fields (case of
most relevance in cryptography) and provides a better understanding of the relevance of the
above dissertation in the cryptography’s framework.

Proposition 3.3.4. Suppose k = F,, L = F;» and I = F a, where ¢ is a prime and d a divisor
of n. Then:

() (Gm)r(k) € F*;
(ii) the group (Gm)r(k) is isomorphic to the subgroup of F* of order ®,4(q);

(iii) if v € (Gm)r(k) and v has a prime order not dividing d, then for all proper intermediate
fields M, in symbols k C M C F, we have v & M.

Proof. Point (i) follows directly by theorem Call 0 € G := Gal(L/k) = Gal(F4n /Fy) the
element that induces Frobenius endomorphism x — z?. Then, the map (3.11)) becomes

Z[G] —> Endy(Resy, /i (Grm))

n—1

Z a0t — {v — vz‘”qi} (3.41)
i=0
Moreover,
(Gm)r(Fy) = ker(®4(0) 1 /k.,.) = ker(v = v®4(D), (3.42)

the latter is a subgroup of F:d of order ®,4(q), and so e have (ii). For the last statement see

Lemma 1 of [9].
O

In some literature, e.g. [6], the primitive subgroup (Gm)F
this convention.

,a 18 denoted Ty, so we shall adopt

Remark 3.3.1. Notice that by proposition and follows that IFqu can be seen as
“almost isomorphic” to € din Ta(Fg). Thus, cryptography in Fy. — intended as crypto-system
sophistication — reducesﬂ to cryptography in primitive subgroups T4(F,) (for the divisors d of
n). In particular, the first point of previous proposition shows how attacks (e.g. index calculus
attacks as those described in [10]) to discrete log problem in JFqu can be used to attack Tq(F,).

The last point of proposition [3.3.4] implies that, in order to attack the primitive subgroup Ty,
one can’t reduce to the multiplicative group of a sub-field of Fj», he has to deal with the whole
group, i.e. a lot of complexity. This suggest how the subgroup T, (Fy) C F,. (of order ®,(q))
is, from this prospective, the most cryptographycally secure.

3.4 Conclusion
The construction of the previous sections, shows how the security of a discrete log—cryptosystem

in V(Fgn), where V is a commutative algebraic group over Fy, reduces to those of its primitive
subgroups Vr_, (Fq), — with d divisor of n.

5Remember what discussed in remark for El Gamal cryposystem.
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In other words, if primitive subgroups are vulnerable by index calculus attacks, then theoret-
ically the whole system is vulnerable, as happens to El Gamal cryptosystem if (p — 1) is smooth
enough.

Starting by this observation, there have been a few attempts of attacks in the case of abelian
varieties and elliptic curves |11].

Moreover, we saw that makes sense to think about Vg, as the most cryptographycally secure
of the subvarieties. With the sake of computational efficiency, one is therefore induced in defining
a cryptosystem only upon Vr ., (instead of the whole V). For instance in the one-dimensional
case, since dim(Vf,, ) = ¢(n) dim(V'), we can represent elements in Vf_, using only a single point
in (F,)#").



Appendix A

Mziscellanea on computability

We briefly summarize here some definitions and results that we use in Chapter 2. For further
readings we also suggest [1], and [12].

A.1 Complexity and one—way functions

A (total) function f : N® — N is said to be computable if there is algorithm (that is, a procedure
that always terminates) A that upon input (z1, ..., z,) outputs f(z1,...,z,).

Definition A.1.1. The time of an algorithm for input (x4, ..., 2, ) is the number of steps that
the algorithm takes to produce the output.
We represent the time of an algorithm as a function of the input size

n

n = Z |z;| where |2;| = [logy(z; +1)] (A1)
i=1

(i.e. |x;| is the number of bits required to write z; > 0) and use asymptotic O(-) notation.

Remark A.1.1. In this work, contrary to what it is common in algorithmic complexity, the
time—cost of the arithmetic operations and predicates over integers is not constant (since we will
require arbitrary large integers and not just 64bits integers).

Assuming z,y € O(n), the cost of arithmetic operations and predicates is the following:

Definition A.1.2. A function f : N® — N is said to be computable in polynomial time
(or that f can be computed efficiently) if and only if there exists an algorithm A and a
polynomial p such that

L Although this can be made more efficient with Discrete Fourier Transformation.

21
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i) A computes f;
ii) Time(A(z1,...,2,)) € O(p(n)).
In this case, for simplicity, we will also say that f is PT—computable or PT.
Definition A.1.3. A function f: N — N is said to be one—way if:
i) it is injective;
ii) it is computed in polynomial time;
iii) its inverse is not computed in polynomial time;
)

iv) it’s honest, that is if |f(x)| € O(|z|") and |z| € O(|f(z)|™") for some constants n and n/.

Ezample A.1.1. If we define the PT bijection f : N — N as following

log, m, if m is a power of 2,
f(m) = { 52 b (A:2)

the 'next free’ odd number, otherwise.

It’s easy to realize that f is not honest, since for even numbers f(z) we have |z| ¢ O(|f(x)|™)
for any constant n’.

A.2 P and NP

Definition A.2.1. We call P the family of the set A whose characteristic function x4 can be
computed in polynomial time.

Ezample A.2.1. In 2002 was proved that the set of prime numbers is in P.
Definition A.2.2. The set A € N" is in NP if exists B € N"*! such that
i) BeP,
ii) if (z,w) € B then |w| € O(p(|z])) for some polynomial p, where z € N" and w € N;
ili) « € A if and only if Jw such that (z,w) € B (if x € A, such w is called a witness of z in
A).

It is an easy exercise to show that P C N'P; proving or refuting the other inclusion is, maybe,
one of the most challenging problems of modern mathematics. The problem P = NP can be
stated in two forms:

Conjecture A.2.1 (Decision version). If A € NP then A € P, i.e. it’s characteristic function
can be computed in polynomial time.

Conjecture A.2.2 (Search version). If A € NP, let B € P a set suitable for definition
than there exists a polynomial-time function g : N — N such that z € A if and only if
(z,g9(x)) € B. In other words if I can find quickly a witness for any element of A.

The above two formulations are actually equivalent, the proof is easy and quite instructive:

Theorem A.2.1. The decision version (DV) and the search version (SV) of the P = NP
problem are equivalent.
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Proof. (SV = DV) obvious: given z, compute in PT g(z) and € A < xp(z,g(x)) =1 (also
computable in PT) where B is the correspondent to A, as in the above definition.
(DV = SV) We can then compute in PT the characteristic function of any set in NP. Let’s
define
C:={(z,p) : x € A and p is the prefix of w such that (z,w) € B}, (A.3)

we are wlog thinking w € N in its binary representation. Since
D :={(z,p,w) : (z,w) € B and p is a prefix of w} (A.4)

is in P (because xp is PT) we have that C € NP, and so x¢ is PT. Then, we can compute g
wit}ﬂ Algorithm 1, that runs in PT because both x¢ and xp do and |w| € O(p(|x])).

Algorithm 1 Given z, compute g(z), the search function, in PT.

Include: x¢o, xB
Input: =
w = € {e is the empty—string}
if xo(z,w) == 0 then
return w {x ¢ A}
else
while xp(z,w) ==0 do
if yo(z,w.0) == 1 then
w = w.0
else
w=w.1
end if
end while
end if

return w

Theorem A.2.2. If there exists a one—way function then P # NP.

Proof. Let’s prove the counternominal; let’s assume P = NP and show how to compute the
inverse of any PT function f in PT. As before, define

C :={(y,p) : p a prefix of f~'(y) in binary} (A.5)
which is in NP because projection of
B :={(y,p,x): f(x) =y and p is a prefix of z}. (A.6)

We can then run Algorithm 2 in PT, and so we deduce that can’t exist one—way functions.
O

2In this context, with the dot notation we indicate the string concatenation.
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Algorithm 2 Compute the inverse of f in PT.

Include: xc¢
Input: y
x = € {e is the empty—string}
if xc(y,z) == 0 then
return 2z {y has no preimage.}
else
while f(z) #y do
if xco(y,2.0) == 1 then
z=2x.0
else
r=u2x.1
end if
end while
end if
return zx




Appendix B

Algebraic groups

B.1 General construction of 7 ®n V'

Here we briefly enunciate some deﬁnitionﬁﬂ and results about tensor product Z ®e V, following
the same line as [4]. The scope is simply to fix some notations and ideas, not to give a complete
description of the setting.

Let ks be a separable closure of the field k, and denote Gy, := Gal(ks/k). We also assume
that V' is a commutative algebraic group over k, while O is a commutative ringﬂ and 7 is a
free O—module with a finite rank and a continuous right action of Gy defined on it. The last
assumption we make is the presence of a ring homomorphism O — Endy(V), so that we can
regard O as a free rank one O—module with trivial Gi—action.

Definition B.1.1. Let’s fix an O—module isomorphism j : O" — Z, where r is Z’s rank as an
O-module. If ¢z € H(k, Auty, (V7)) is the image of the homomorphism

v e, (B.1)

under the composition induced by the homomorphism O — Endg (V). Then, we denote Z ®¢p V
the Z—twist of V, i.e the twist of V" by the cocycle ¢z (see Section 3.1 of [13]). In other words,
7 ®o V is the only commutative algebraic group over k with the ks;—isomorphism

o VI — IR0V, (B.2)
such that
cz(y) = ¢~ o p?, for every v € Gy. (B.3)

Ezample B.1.1. (Powers of V') Taking Z = Z" with trivial Galois action, and j as the identity
map on Z", we find that the cocycle cz is trivial, and therefore we can take ¢ as the identity
map on V. Applying the above definition we get Z" ®z V = V", and in particular V = Z ®z V.

Other two interesting examples in our contest are:

1This concept can be introduced in different ways, an alternative definition (equivalent to the one we give
when they are comparable) can be found in the Appendix to [4].
2In the cases we consider there will always be O = Z.

25
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Ezample B.1.2. (Restriction of scalars) Taking L/k a finite Galois extension, one have that
Z[G) ®z V = Resy,(V), where G := Gal(L/k). Indeed, the isomorphism

j:2% — 7[G)
(ag)gec — Z agg_l (B.4)
geG

induces an L-isomorphism ¢ : V¢ — Z[G] ®7 V. Finally, the composition between ¢! and the
projection on the identity component of V¢ (in symbols m;q. : V& — V) gives a homomorphism
that satisfies the universal property of Resy, (V).

Ezample B.1.3. (Quadratic twists of Gy, ) Let’s consider V' = Gy, the multiplicative group, and

use the notations introduced in Chapter 3. Being (Gm ), its primitive subgroup, we consider the
isomorphism

qb : Gm — (Gm)L
(z,y) —> <x42ry:;\;5y1> (B.5)

and therefore we find that cz(y) = £.(y) = ¢ 10 ¢?. Thus T ®z Gm = (G

Others examples can be found in Section 3 of [5]. We conclude this section with some
properties, whose proof can also be found in [4].

Theorem B.1.1. With the above assumptions and notations, the variety Z ®» V is a commu-
tative algebraic group over k such that:

(i) Z®e V is functorial in both V' and Z.

(ii) For all commutative k-algebras A, and all Galois extensions F' of k for which Gp acts
trivially on Z, we have that

ZRoV)(FerA 2TRe (V(F®kA) (B.6)

and
(Z®o V)(A) = (I (V(F @ A))) M), (B.7)

where the right-hand sides are the usual tensor products of O—modules.

(iii) Let W also be a commutative algebraic group over k and J a free O—module of finite rank
and a continuous right action of G. Then, there is a natural Gy—equivalent O-module
isomorphism:

HOmo(I, j) XKoo Homks (V, W) — Homks (I Ro V,TJ Qo W) (B8)
whose restriction to a homomorphism of O—modules is

Homo[gk](z, j) ®o HOmk(Vr, W) — Homk(I Ro V,T Q0 W) (Bg)

(iv) If F/k is a separable extension, J a free O—-module of finite rank and a continuous right
action of Gy, and also Z and J are isomorphic as O[Gg|-modules, the the commutative
algebraic groups Z ®» V and J ®n V' are isomorphic over F'.

(v) If F/k is a separable extension, and the action of Gr on Z is trivial, then Z ®o V is
F-isomorphic to Vrarko(Z),



B.1 General construction of Z®p V 27

(vi) If 0 - Z - J — K — 0 is an exact sequence of free O-modules of finite rank and with a
continuous right action of Gy, then the induced sequence

0—I0oV-—TR0V —KooV —0 (B.10)

is an exact sequence of commutative algebraic groups over k.

(vii) fZ, 7, ... J; are free O—modules of finite rank with a continuous right action of Gy, and
I®,Q2a!_ (T ®z Q) as O[Gg]-modules, then

t
T ®e V is k-isogenous to @($ ®o V). (B.11)
i=1
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