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Cosmological example
00000

General Relativity

General Relativity (GR) and Einstein's field equations

1
Rab - iRgab + Agab = ab

provide the current more reliable description of gravitation in Physics.
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Cosmological example
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General Relativity

Einstein's field equations can be derived by varying the action with cosmological constant

S = Solgu) + S (gan ) = 5 [ d'oV=G-28+ R)+ Slgw V). (2)

where

R := ¢*Rap (3)

is the curvature scalar and the
stress—energy—momentum tensor of matter

fields is
—2 0Sm

Top 1= =5 3g°" 4
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Cosmological example
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Modified Theories of Gravity

Despite the numerous successes of General Relativity (GR), there are indications that the

theory is "incomplete"; the main one is
= The incompatibility of GR with Quantum Mechanics.

After Utiyama and de Witt showed in 1962 that renormalization requires higher—order

curvature terms in Ic(gap), the Higher-order theories of Gravity became popular.
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Cosmological example
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Metric f(R) theories of gravity

One of the most common choices is to investigate a more general dependence on R

within the Lagrangian of gravitational actions:
1
S = 5 [ d'aV=gF(R)+ Susgun, ) (5)

After the variation with respect to ¢g®°, and some manipulations one finds the fields
equations:
1
fR(R)Rab — if(R)gab — (Vva - gabD)fR(R) - H/Tabv (6)

where [ := V*V,, and V, denotes the covariant derivative with respect to the

Levi—Civita connection.
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Cosmological example
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Friedmann—Lemaitre—Robertson—-Walker (FLRW) spacetime

As in the usual GR scenario, one can investigate homogeneous and isotropic solutions of
(6), by considering the metric ansatz

dr?

a b 2 2
gabdx dZL' :—dt —|—a(t) {m

+7%(d6® + sin® 0 dqbz)} , (7

where (r, 6, ¢) are comoving coordinates, and a(t) is a scale factor of the universe. After

introducing the Hubble parameter, one is left with

5 — 1 fr(R)R — f(R) ) K
R= SFan(RVH [lip+ 3 —3fr(R)H 7fR(R)a72}’ (8)
H:%—ZHZ_? ©)

p=—3H(p+p),
a= Ha.
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Cosmological example
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If we consider a spatially flat universe in the absence of matter, the latter system

decouples, and one reduces to

H =R/6—2H?

where f € C3(I), and frr > 0 in the open interval I C R.

W
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\\\ = where f(R) =1+ R+ R*.
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Singular planar systems
00000000

Singular autonomous planar dynamical systems

Numerous contemporary models in the fields of physics, demographics, and engineering
revolve around the use of singular systems of ordinary differential equations (ODEs). In

this presentation, we address the autonomous planar case:
oz, y) & = B(z,y) (13)
y=6(z,y),

where a, 3,6 € C'(Q), mainly aiming at describing the qualitative dynamical features of

Carathéodory solutions near the singular curve

SC:={(z,y) € Q| a(z,y) = 0}. (14)
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Singular planar systems
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Singular points in the Geometric Theory of Differential Equations

The definition that best formalizes our intuition of singular point is given in the context

of the Geometric Theory of Implicit Differential Equations, i.e. expressions of the form

G(z,y,p) = 0, (15)
where p = dy/dx and G is a smooth function in some domain of R?.

A point of the surface .#, defined by (15), is said to be singular, if it is a critical point of

the vertical projection mapping onto the (z,y)—plane.

By the implicit function theorem, the singular points form a curve, the criminant curve,

in the three—dimensional space of 1-jets:

CC:{(Jj,y,p) | G(m,y,p):O, Gp(x7yap):0}‘
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Singular planar systems
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In our case, we can view the solutions of (13) as a particular parametrization of the

integral curves of the implicit differential equation

G(.T,y,p) = ﬁ($,y)p - a(xv y)d(:c,y) =0, (17)

as
_dy g _ alwy)dy) (15)

T
It follows that the criminant curve of (17) is

CC = {(xvyvp) | ﬁ((L‘,y) =0, a(x,y)é(m,y) = O}v (19)

which, in the generic case, is composed of straight lines
parallel to the p—axis whose projections on the (z,y)—plane

are equilibrium points or lie on SC.
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Singular planar systems
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Regular associated system

= The main idea is to deduce the qualitative properties of Carathéodory solutions of

(13), by the regular associated dynamical system defined as

T = ﬂ(m,y),
Y =d(z,y)a(z,y),

(20)

as the solutions of the two systems are two different parametrizations of the same

integral curves.

= In fact, they have the same direction p = dy/dx in the phase space, and their "time

arrows" are reversed only in

Q- :={(z,y) € Q] afz,y) < 0}.
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Singular planar systems
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Figure: The phase portrait of the singular system © = v

, ¥ = 1 and the one of the
regular associated system # =z — 2(z — 1)y%, y = y.
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Singular planar systems
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Singular points

= We want to study the behaviour of solutions in a neighborhood of singular points,

i.e. points where the integral curves are not (locally) parallel to each other.

= The introduction of the regular associated system, suggests an intuitive definition:

Definition

m A point &5 €  is a proper singular point of (13), if it is an equilibrium point of the
regular associated system (20), but not of (13).

= A nondegenerate (proper) singular point of (13) is a singular point x5 €  such that

det[DF (x5)] # 0. (22)
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Singular planar systems
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Non—transversality condition

Motivated by our starting example, from now on, we require the non—transversality

condition

%‘;(m);o in sc, (23)

as this implies 5
(F(z), Va(x)) = (@) 5 ()

i.e., up to a coordinate change and restricting the domain, the singular curve is the

=0, (24)

r—axis in .
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Singular planar systems
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Proposition

Assume o = 0 and 3 = 0 have a discrete intersection, and they do not cross § = 0
simultaneously. If the non—transversality condition holds, a Carathéodory solution of (13)

can evolve through the singular curve o = 0, iff it passes through a singular point.
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Figure: On the left: the phase portrait of & = (1 +z)/y, ¥ = 22. On the right: the one of t
system & = —x/y?, § = 1 + 3.
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gical example nar systems Funnel points on continuation
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A point & on the singular curve is called a funnel point if there is an open neighborhood

V of & such that

1) no Carathéodory solution of (13) with initial data in V' can cross the singular curve

if not passing through .
2i) all the Carathéodory solutions of (13) originating in
V+ =VnN Q+ (25)

contain such a point in the future [resp. past];

2ii) all the Carathéodory solutions of (13) originating in
Vo =VnNna_ (26)

contain such a point in the past [resp. future].
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Funnel points
oe

Theorem

‘

Assume o = 0 and f = 0 have a discrete intersection, and they do not cross § = 0
simultaneously. Suppose that the singular system (13) has a singular point xs on SC and
that z = a(x,y) properly intersects the (z,y)—plane on the x—line, i.e. the
non—transversality condition (23) holds in Q. If &, corresponds either to a (locally)
asymptotically stable/unstable node of the regular system (20), then the singular point

s is a funnel point.
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Funnel points
[ele] ]

= For simplicity the above theorem is stated with respect to the reduced form (13),
notice however that in a more general case, when the singular curve coincides with

the separatrix of the node, one can reduce to (13) by a coordinate change.
= By the principle of linearized stability follows that the last condition, in the above
statement, holds if all the eigenvalues of DF(x,) have negative (or positive) real

parts.
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Solution continuation
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Solution continuation

= It is interesting to consider additional conditions at the singular points so as not to
lose the uniqueness of solutions.
= A natural condition that allows to define C solutions, is the one of prescribing to

""keep the same direction in the phase plane".
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Solution continuation
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Case 1: Incident flow

04r

i

z—2(z—1)y>
Y ~
the origin, which is a nondegenerate singular point. In this case the eigenvalues of DF'(0) are

Figure: One the left, the phase portrait of the singular system & = , y =1 around

A1 = A2 = 1. On the right: the correspondent phase surface obtained lifting the phase plane in

the (z,y, p)-space of 1-jets.
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Solution continuation
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Case 2: Tangential flow

Figure: One the left, the phase portrait of the singular system & = w, y =1+ z around
the origin, which is a nondegenerate singular point. In this case the eigenvalues of DF(O) are
A1 = (3—+/5)/2 and A2 = (3 ++/5)/2. On the right: the correspondent phase surface obtained

lifting the phase plane in the (z,y, p)—space of 1-jets.
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FLRW model
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Singular points

Now, let us apply the previous results to our cosmological model:

Bo- m E (fR(R)R - f(R)) - fR(R)HQ} ,

H =R/6—-2H>

If f € C3(I), and frr > 0 in I C R, then the equation

(29)

frR(R)R = f(R) (30)

admits at most two distinct solutions in I. Moreover, if two solutions exist they have

opposite signs.

As singular points of the system (12) satisfy H = 0 and (30), if f(0) # 0, we conclu

that there exists at most one singular point in the left/right semi—plane.
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FLRW model
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Singular points are funnels

In order to investigate the nature of singular points, we study the derivative of the regular

associated system:

frr(R)(R — 6H?) —12H - fr(R)
DF(R,H) = . (31)
H - (frrr(R)(R—12H?) + frr(R)) frr(R)(R —36H7)

which in the singular points (Rs,0) reads DF(RS,O) = frr(Rs)Rs laxa.
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FLRW model
[e] Jelelele]ele}

Singular points are funnels

In order to investigate the nature of singular points, we study the derivative of the regular

associated system:

frr(R)(R —6H?) —12H - fr(R)
DF(R,H) = . (31)
H - (frrr(R)(R —12H?) + frr(R))  frr(R)(R - 36H?)
which in the singular points (Rs,0) reads DF(RS,O) = frr(Rs)Rs laxa.

= From the Theorem 1 above follows that the singular points are funnels.
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FLRW model
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Singular points are funnels

In conclusion, if f € C3(I), £(0) # 0 and frr > 0 in the open interval I C R, the

singular points are funnel points of the first kind.

= The additional condition of
preserving the direction of a
solution at a singular point

prescribes a unique continuation.
= This additional condition allows
defining a dynamical system from
the equations (12).
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FLRW model
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In the case f(R) = a + bR 4 cR? with ¢ > 0, the singular points satisfy

R, = :I:\/g, and H, =0, (32)

and so they exist if and only if @ > 0. The Jacobian matrix of the regular associated

system is

DF(++/a/c,0) = £2\/ac ((1) ?) . (33)
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FLRW model
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Bounded curvature models

= Since singular points may correspond to equilibria of the regular associated system
possessing a basin of attraction, their importance, from a dynamical perspective, is

not only local.

For instance, consider the hemi—circular 04f

_ N (77
bounded—curvature model ool \\\\\\\\ " //;//j//}/

f(R):= —v/(R—R.)(R — R), (34) 00 Z:;/.//» e~

with 0 < R, < R; defined in the interval L
I= (R, R).
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FLRW model
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Conclusion

In this work, starting from an FLRW f(R) cosmology model

= we investigated the nature of singular points of planar autonomous systems of ODEs
of the form (13) by studying the regular associated system (20).

= We defined funnel points and showed sufficient conditions for a singular point to be
a funnel.

= Additional conditions at the singularity were discussed in relation to the Geometric
Theory of differential equations.

= The above discussion was applied to the initial example leading to the conclusion

that singular points of (12) are funnel points (under the usual assumptions on f and

when f(0) # 0).
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FLRW model
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Possible Future Directions

= Investigate symmetric periodic orbits of
the FLRW model (12).

= Examine the particular dynamics by
selecting specific and appropriate forms
of f(R).

= Implementing the aforementioned
methods on different systems, even in

higher dimensions.
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