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Overview

In this presentation we expose the ideas behind the algebraic definition of the

concept of genus for an algebraic curve over K. In particular

m if C is smooth and projective over C, we want that the latter coincides with

the topological genus of C(C).

= We see that it will emerge algebraically by treating the group of Divisors of

the curve.

= Finally we will concentrate on Riemann—Roch Theorem.
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Algebraic Curves
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Plane Curves and Singularities

Algebraic plane curves correspond to the zero set of a nonconstant C € K]z, y].

u If C is irreducible, V(C) is an irreducible variety in A% so we restrict to this
case.
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Algebraic Curves
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Plane Curves and Singularities

Algebraic plane curves correspond to the zero set of a nonconstant C € K]z, y].

u If C is irreducible, V(C) is an irreducible variety in A% so we restrict to this

case.

= A point P = (a,b) € C smooth or simple if 0,C(P) # 0 or 9,C(P) # 0, in
this case its tangent line is

0y,C(P)(x — a) + 0,C(y —b) = 0.
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Plane Curves and Singularities

Algebraic plane curves correspond to the zero set of a nonconstant C € K]z, y].

u If C is irreducible, V(C) is an irreducible variety in A% so we restrict to this

case.

= A point P = (a,b) € C smooth or simple if 0,C(P) # 0 or 9,C(P) # 0, in

this case its tangent line is
0y,C(P)(x — a) + 0,C(y —b) = 0.

= Otherwise P is called a singular point, in particular: it is an ordinary

singularity if its tangent cone is composed of distinct lines.
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Plane Curves and Singularities

Algebraic plane curves correspond to the zero set of a nonconstant C € K]z, y].

u If C is irreducible, V(C) is an irreducible variety in A% so we restrict to this

case.
= A point P = (a,b) € C smooth or simple if 0,C(P) # 0 or 9,C(P) # 0, in
this case its tangent line is
0y,C(P)(x — a) + 0,C(y —b) = 0.
= Otherwise P is called a singular point, in particular: it is an ordinary
singularity if its tangent cone is composed of distinct lines.

= The multiplicity mp(C) of an ordinary singularity P is the number of line

in its tangent cone.
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Algebraic Curves
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= Notice that if P = (0,0)
the multiplicity of the curve
A=Y-X B=y'-X'+X in P is the degree of its the

lowest homogeneus

@_ component.

u After a change of

coordinate one can use the

c=y*-x* D=Yy?-x*-Xx*
same criterion to find the
multiplicity of the other
singular points.
E=(X*+Y??+3Xx%y - V3 F=(X*+Y?)3-4x2y?
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Intersection numbers

For all plane curves F' and G and all points

P € AZ there is a unique nonnegative integer
Ip(F,G) := dimg Op(A?)/(F,G) G F

such that /
» if F and G do not intersect Ip(F,G) =0,
= if F and G do not intersect properly
Ip(F,G) = oo,
w Ip(F,G) > mp(F)mp(G),
w Ip(F,G) =1Ip(F,G + AF) for any
A e K[z, y].
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Algebraic Curves
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More generally, algebraic curves are 1-dimensional varieties, so its field of rational

function has transcendence degree one.

Theorem

Any algebraic curve is birational to a plane projective curve with only ordinary

singularities.
Since any algebraic curve has a smooth model, in other words:

Theorem

Any algebraic curve curve is birational to a unique (up to isomorphism) smooth

projective curve.

we concentrate on smooth projective curves.
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Affine curves

We consider a smooth, irreducible, affine curve C' over an algebraically closed field
K, and denote

s A(C) :=K]z,y]/(C) its affine coordinate ring.
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Affine curves

We consider a smooth, irreducible, affine curve C' over an algebraically closed field
K, and denote

s A(C) :=K]z,y]/(C) its affine coordinate ring.
n K(C):={f/g: f,g € A(C) and g # 0} its field of rational functions.
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Affine curves

We consider a smooth, irreducible, affine curve C' over an algebraically closed field
K, and denote

s A(C) :=K]z,y]/(C) its affine coordinate ring.
n K(C):={f/g: f,g € A(C) and g # 0} its field of rational functions.
m Op(C) the local ring of P on V(C), with the (unique) maximal ideal

mp(C)={f/g9: f,g € A(C), with f(P) =0, g(P) # 0}.
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Discrete valuation rings Op

Recall that, since every point of C is regular, any Op is a discrete valuation ring:

a) mp(C) = (t) is principal, with ¢ € Op a local coordinate for C in P.
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Discrete valuation rings Op

Recall that, since every point of C is regular, any Op is a discrete valuation ring:
a) mp(C) = (t) is principal, with ¢ € Op a local coordinate for C in P.

b) Every ¢ € K(C) can be written ¢ = ¢t™, with ¢ a unit, i.e. ¢ € Op —mp,
and n = ordp(p).
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Discrete valuation rings Op

Recall that, since every point of C is regular, any Op is a discrete valuation ring:
a) mp(C) = (t) is principal, with ¢ € Op a local coordinate for C in P.

b) Every ¢ € K(C) can be written ¢ = ¢t™, with ¢ a unit, i.e. ¢ € Op —mp,
and n = ordp(p).

o) If ¢ = f/g we have ordp(p) = Ip(f,C) — Ip(g,C).
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Discrete valuation rings Op

Recall that, since every point of C is regular, any Op is a discrete valuation ring:
a) mp(C) = (t) is principal, with ¢ € Op a local coordinate for C' in P.
b) Every ¢ € K(C) can be written ¢ = ¢t™, with ¢ a unit, i.e. ¢ € Op —mp,
and n = ordp(p).
o) If ¢ = f/g we have ordp(p) = Ip(f,C) — Ip(g,C).
d) In particular, ordp : K(C)* — Z is a discrete valuation, and A(C) and mp
are respectively the pullbacks of [0, 00) and (0, c0).
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Discrete valuation rings Op

Recall that, since every point of C is regular, any Op is a discrete valuation ring:
a) mp(C) = (t) is principal, with ¢ € Op a local coordinate for C in P.

b) Every ¢ € K(C) can be written ¢ = ¢t™, with ¢ a unit, i.e. ¢ € Op —mp,

and n = ordp(p).

o) If ¢ = f/g we have ordp(¢) = Ip(f,C) — Ip(g, C).
d) In particular, ordp : K(C)* — Z is a discrete valuation, and A(C) and mp
are respectively the pullbacks of [0, 00) and (0, c0).

e) Intuitively, ordp(y) is grater (resp. is less) than zero if and only if ¢ has a

zero (resp. a pole) in P.
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Projective curves

Similarly we introduce above definitions in case of projective curves, considering

S(C) the homogeneus coordinate ring of C as a graded ring, i.e.

S(C) = Sa(C).

d>0

The definition of multiplicity of rational functions on C is easily extended since it

is a local property.
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Consider the rational function ¢ = £ over the projective curve
C:Y?Z - X3+ XZ? and P=(0:0:1) € C. Then

ordp(p) = ordp(y) —ordp(z) =1 -2 = —1.
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Algebraic Curves
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Theorem (Bézout)

Let F' and G be two projective curves without common component over a ground

field K, then the number of their intersections counted with multiplicity is

Z Ip(F,G) < deg F - degG.
PeFNG

Moreover, equality holds if K is algebraically closed.
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Theorem (Noether)
Let F' be a smooth projective curve over K an algebraically closed field. Let G

and H be two smooth projective curves that do not have a common component
with F'. Then

w if Ip(F,G) < Ip(F, H) for all P € Py there are homogeneus polynomials A
and B (of degrees deg H — deg F' and deg H — deg G) such that

a) H=AF + BG;

b) IP(F,H) = IP(F,G) == IP(F,B) for all P € Ps.
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Topological genus
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Topology of complex Curves

If we consider a smooth projective curve over C, its points V(C) form a
1-dimensional complex manifold, moreover

C
. _
19—e o D |

s V(C) is compact, <
m V(C) is oriented, 4

glue

A
" C
= o~

= V(C) is connected.

Therefore, it homeomorphic to a
sphere with a finite amount of
"handles", i.e. the topological

genus of V(C). Figure: C': ZY? + 72X — X* = 0.
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Topological genus of complex Curves

Cell decomposition

Definition

Let M be a compact 2—dimensional (real) manifold, a cell decomposition of M,

is a finite disjoint union of points, (open) lines, and (open) discs.

=, e

Figure: Three valid disjoint decompositions of P (C).
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[e]e] lelelele}

Topological genus of complex Curves

Euler characteristic

Lemma

Let M be a compact 2—dimensional (real) manifold. Consider a cell

decomposition of M consisting of g points, o1 lines, and o5 discs. The number
X =09 — 01+ 09

only depends on M and is called Euler characteristic of M.
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Topological genus
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Euler characteristic

Lemma

Let M be a compact 2—-dimensional (real) manifold. Consider a cell

decomposition of M consisting of g points, o1 lines, and o5 discs. The number
X =00 — 01+ 02
only depends on M and is called Euler characteristic of M.

= From any two cell decomposition we can find a common refinement.
= Such a refinement is obtained through operations of two types:
1) adding another point on a line,

2) adding another line to a disc,

which do not modify .
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Topological genus
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Relation between g and x

Given M a connected and compact oriented 2—dimensional (real) manifold, we

can build a valid cell decomposition using 4 lines and 2 points for each hole which
lead to a total of

= 09 = 29 + 2 points, \
s 01 = 4g + 4 lines, ‘ A
S

= 01 = 4 discs.

Therefore
X=0p—01+02=2-29g < g=1-y/2.
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Topological genus
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Theorem (Topological degree—genus formula)

A smooth curve of degree d in Py(C) has topological genus (dgl) = &2@_2).

Proof sketch:
= Wlog (0:1:0) ¢ C and the projection 7 : V(C) — P1(C) is well defined.

m The inverse images of the points (x : z) € P;(C) contains d points unless C
has a multiple zero, i.e. C' and 9,C are both null there.

= Their corresponding inverse image has d — 1 points.

= Since at a ramification point we have Ip(C,d,C) =1 we have a total of
deg C - deg 0,C = d(d — 1) ramification points of .

= Taking a fine cell decomposition of P1(C) containing their m-images and s.t.

09 — 01 + 02 = 2 and lifting it leads

x = dog — d(d — 1) — doy + doy = 3d — d>.
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Topological genus of complex Curves

Summarizing

= We have seen that to every curve in Po(C) can be assigned such a

topological invariant, its genus.
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Topological genus of complex Curves

Summarizing

= We have seen that to every curve in Po(C) can be assigned such a

topological invariant, its genus.

= Remarkably, the topological genus of a smooth complex projective curve

depends only on its algebraic degree.
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Topological genus of complex Curves

Summarizing

= We have seen that to every curve in Po(C) can be assigned such a

topological invariant, its genus.

= Remarkably, the topological genus of a smooth complex projective curve

depends only on its algebraic degree.

= A natural question arises: "is it possible to define an algebraic genus for

smooth projective curves which coincides with the topological one in case
K=C?
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Divisors on Curves

Let C' be a smooth projective curve

= A divisor on C'is a formal sum D := %, - apP, where ap € Z and ap =0

for all but a finite amount of P.
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Divisors on Curves

Let C' be a smooth projective curve

= A divisor on C'is a formal sum D := %, - apP, where ap € Z and ap =0

for all but a finite amount of P.

s A divisor D € Div C is called effective if ap > 0 for all P € C.
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Divisors on Curves

Let C' be a smooth projective curve

= A divisor on C'is a formal sum D := %, - apP, where ap € Z and ap =0

for all but a finite amount of P.
s A divisor D € Div C is called effective if ap > 0 for all P € C.

s For Dy, Dy € Div C we write

Dy > Dy <= D;— Dy is effective.
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Divisors
0000000

Divisors on Curves

Let C' be a smooth projective curve

= A divisor on C'is a formal sum D := %, - apP, where ap € Z and ap =0

for all but a finite amount of P.
s A divisor D € Div C is called effective if ap > 0 for all P € C.

s For Dy, Dy € Div C we write
Dy > Dy <= D;— Dy is effective.

= The degree of a divisor D := ), - apPisdegD =) .- ap and we
denote
deg : Div C — Z, DVC = ker(deg).
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Rational functions and divisors

Having defined the multiplicities of polynomials and rational functions on curves

allows to introduce a particular class of divisors.

Nicola Dal Ci ity of Udine
Algebraic Curves and Riemann—-Roch Theorem 21 /47




Divisors
[o] lelelelelele)

Rational functions and divisors

Having defined the multiplicities of polynomials and rational functions on curves

allows to introduce a particular class of divisors.

» For a non—zero polynomial f € S(C) — {0}, the divisor of f is

div f:=> ordp(f)-P >0

pPeC
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Rational functions and divisors

Having defined the multiplicities of polynomials and rational functions on curves

allows to introduce a particular class of divisors.

» For a non—zero polynomial f € S(C) — {0}, the divisor of f is

div f:=> ordp(f)-P >0

pPeC

= Similarly for a non—zero rational function ¢ € K(C)*, the divisor of ¢ is

div ¢ := Z ordp(p) - P € DiVC.
PeC
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Rational functions and divisors

Since ordp is a valuation we have that

div(fg) = Y ordp(fg)- P =) (ordp(f) +ordp(g)) - P = div f +div g,

pPeC PeC

and similarly
div(pv) = div(®) + div(¥).

In particular
div: K*(C) — Div C

is a group homomorphism.
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Consider the rational function ¢ = £ over the projective curve
C:Y2Z — X3+ XZ2?, then

dive=(0:0:1)+(-1:0:1)+(1:0:1)—2(0:0:1)—(0:1:0)
=—(0:0:1)4+(-1:0:1)4+(1:0:1)—(0:1:0)
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Bézout and Nother theorems for divisors

Notice that for f and ¢ respectively a non—zero polynomial and rational function

we have

deg(div f) = > ordp(f) = > Ip(C,f) = degC - deg f,

PeC PeC

while writing ¢ = h/g, with h, g € S4(C) and g # 0 we get
deg(div p) = deg(div h) — deg(div g) = degC - (d — d) = 0.

In particular
div : K*(C) — Div’C ¢ Div C.
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Bézout and Nother theorems for divisors

Proposition (Noether's Theorem for divisors)

If C is a projective curve and g, h € S(C') non—zero homogeneous polynomials
with div g < div h. Then, there exists a homogeneous b € S(F') of degree

deg h — deg g such that

h=bgin S(F), and divh =divb+divg.

Corollary

The only rational functions everywhere regular on a projective curve C' are
constants, i.e.

() 0r =K >

PeC
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Divisors
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Divisor classes and Picard group

= A divisor on C' is called principal if it is the divisor of a certain ¢ € K(F)*,
i.e.
Prin C := {div ¢ : ¢ € K(F)*} c Div °C c Div C.

= The quotient group
Pic C' := Div C/Prin C
is called the Picard group or the group of divisor classes of C'.

= Two divisors Dy and D are said linearly equivalent if they define the same
class, i.e
Dy ~ Doy < Dl—DQZdiV ©.

Nicola Dal Cin University of Udine

Algebraic Curves and Riemann—-Roch Theorem 26 /47



Divisors
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Divisor classes and Picard group

Example

If C'is a projective line or a conic, then all divisors of Div’C' are linearly
equivalent, i.e. Pic’C := DivOC/Prin C is trivial.

For curves of higher degree, this is never the case. In fact

Proposition

If deg C' > 3 then P £ Q for any distinct points P,Q € C. In particular Pic°C is

not trivial.

Nicola Dal Cin University of Udine
Algebraic Curves and Riemann—Roch Theorem 27 /47




Vector spaces L (D)
000000000000

Vector spaces L(D)

= Determining "how many" functions there are on a projective curve is an
interesting task since one expects that this feature reflects some intrinsic

properties of the curve.
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Vector spaces L(D)

= Determining "how many" functions there are on a projective curve is an
interesting task since one expects that this feature reflects some intrinsic
properties of the curve.

= With this aim, we are interested in studying rational function which are

regular everywhere but is a finite set of points where we allow poles (or zeros)

of a certain order.
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Vector spaces L (D)
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Vector spaces L(D)

If D=3 pccap- P, we define

L(D) :={p e K({)" : dive+ D >0}uU{0}
={p e K(C)* : ordp(p) > —ap forall P € C}

the space of rational functions such that
1) ¢ may have a pole of order at most ap for all P such that ap > 0,
2) o must have a zero of order at least —ap for all P such that ap < 0.

Our aim is to determine ¢(D) := dimg L(D) € NU {oco}, which is called

dimension of the divisor D.
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Vector spaces L (D) 4 n—Roch theorem
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a) If D =0 the space

L(D) = L(0) = {p € K(O)* : divp>0}U{0} =K

and so £(0) = 1.
b) If deg D < 0, we have L(D) = {0} and £(D) = 0.
c) If D <D’ then L(D) C L(D') and ¢(D) < ¢(D").
d) If D ~ D' are two linearly equivalent divisors on C, then ¢(D) = £(D").
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Lemma

Let D be a divisor on a projective curve C. Then
(i) for any point P € C we have (D + P) = {(D) or {(D + P) = ¢(D) + 1.
(i) For any divisor D' > D we have £(D) < £(D’) < ¢(D) + deg(D’ — D).
(i) If deg D > 0 then ¢(D) < deg D + 1 < +o0.
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Vector spaces L (D) n—Roch theorem
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Let D be a divisor on a projective curve C. Then
a) for any point P € C we have ¢(D + P) = {(D) or {(D + P) = {(D) + 1.
b) For any divisor D’ > D we have {(D) < {(D’) < ¢(D) + deg(D’ — D).
c) If deg D > 0 then (D) < degD + 1 < +o0.

Let D=3 p.cap- P and consider @ : L(D + P) 5 ¢ — (t7 1) (P) € K.

Observing

d(p) =0 <= ordp(t**tp)>0 <= ordp(p)+tap >0

we deduce that ker ® = L(D), and L(D + P)/L(D) 2 Im ® C K.
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Vector spaces L (D)
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Proposition
If deg D > 0 on a projective curve of degree 1 or 2 then ¢(D) = deg D + 1.

Indeed, recall that Pic C' = Z/Pic’C' and that in this case Pic’C’ = {0}.
If P and @ are distinct

PrQ «— divp=Q—-P <« diveF=kQ—-kP
and therefore

O +EP=kQ >0
W+ (k—1)P=kQ—-P#0

— " e L(kP) — L((k —1)P).

We conclude K = L(0) C L(P) C --- C L(nP), and so {(nP) = n+ 1. Since

every divisor D of degree n is D ~ nP we conclude.
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Vector spaces L (D)
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If deg C > 3 then

a) for every point ¢(P) = 1.
b) if P # @, we have {(P — Q) =0.

m If o € L(P), it must have a pole of order 1 in P and be regular elsewhere,
and so div ¢ = Q — P. By above proposition @ = P and so L(P) = K.
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Vector spaces L (D)
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If deg C > 3 then

a) for every point ¢(P) = 1.
b) if P # @, we have {(P — Q) =0.

m If o € L(P), it must have a pole of order 1 in P and be regular elsewhere,
and so div ¢ = Q — P. By above proposition @ = P and so L(P) = K.
» We have L(P — Q) C L(P) =K and so L(P — Q) = {0}.
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Vector spaces L (D) 4 Roch theorem
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If deg C > 3 then

a) for every point ¢(P) = 1.
b) if P # Q, we have {(P — Q) = 0.

If deg C' > 3, for any two distinct points P, Q € C we have

£0)=1 and ¢(P—-Q)=0,

so in general ¢(D) does not only depend on deg D.
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If C'is a projective curve of degree d (wlog C' # Z). Then for all n > d for the

divisor D :=n - div Z we have:

a) There is an exact sequence
0 — K[X,Y, Z]n_g -5 K[X, Y, Z],, =2 L(D) — 0.

b) (D) =degD+1— (%;").
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Riemann’s Theorem and degree—genus formula

Theorem (Riemann)

Let C be a smooth, irreducible projective curve of degree d.

u There is a unique smallest integer g, depending only on C, such that
{(D) > degD+1—g, (1)

for any divisor D € Div C. Such g is called (algebraic) genus of C (or of its
function field).

If C' is a smooth projective plane curve of degree d, its algebraic genus is
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We show that g := (dgl) satisfies £(D) > deg D + 1 — g for all D. Notice

= If (1) holds for D it holds for any linearly equivalent D" ~ D;
m If (1) holds for D it holds for any D’ < D, in fact

(D" <4(D)—deg(D—D") <degD+1—g—deg(D—D') =degD'+1—g.

We can write a divisoron C as D = P; + --- + P,, — E, where E is an effective
divisor and P; € C. Choosing n lines I; through P; (not equal to C') we define

n

~ D

Z
D' ::D+divl

e
which satisfies
D':P1+-~~+Pn—E+divZ”—Zdivligdin". >

=i
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A few remarks

» If K = C the algebraic genus of a smooth projective plane curve coincides

with its topological one.
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A few remarks

» If K = C the algebraic genus of a smooth projective plane curve coincides

with its topological one.

= We can define the genus of a curve as the genus of the smooth projective

curve that is birational to it.
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A few remarks

» If K = C the algebraic genus of a smooth projective plane curve coincides

with its topological one.

= We can define the genus of a curve as the genus of the smooth projective

curve that is birational to it.

= The genus of a curve is (tautologically) a birational invariant.
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A few remarks

» If K = C the algebraic genus of a smooth projective plane curve coincides
with its topological one.
= We can define the genus of a curve as the genus of the smooth projective

curve that is birational to it.
= The genus of a curve is (tautologically) a birational invariant.

= In case C' is a projective plane curve of degree d with only ordinary

singularities, the "degree—genus formula" must be modified as
g= (d— 1)(d—2) . Z mp(mp— 1)

2 2 ’
Pes

where S is the set of singular points and mp the multiplicity of C' at P.
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Canonical Divisor

We have proved the following bounds for the dimension of an effective divisor
D eDivC
degD+1—g<{(D)<degD+1.

= Notice that we can not expect a formula only depending on deg D.
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Canonical Divisor

We have proved the following bounds for the dimension of an effective divisor
D eDivC
degD+1—g<{(D)<degD+1.

= Notice that we can not expect a formula only depending on deg D.

= It turns out that the difference between ¢(D) and deg D + 1 — g can be seen

as the dimension of another divisor D’ € Div C related to D.
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Canonical Divisor

Let C be a projective curve of degree d. For any line [ (not equal to C) we define
Ko :=(d-3)divli €PicF
the canonical divisor (class) of C'.

Notice that this definition does not depend on the chosen line since every two

lines are linearly equivalent.
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For any projective curve C of genus g we have deg K¢ = 2g — 2.

deg Ko = (d — 3) = deg(div [) = (dS)d_2(d1) —2=2g—2.
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For any point P on a projective curve C' we have ¢{(K¢ + P) = {(K¢).

Remark
If K = C the latter is a direct consequence of the Residue Theorem for differential

forms. Indeed, a form w can not have exactly one non—zero residue and so for any

v € K(C)
div (pw)+P >0 = div (pw) > 0.

In other words L(div w + P) = L(div w).

University of Udine
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Riemann—Roch theorem

Theorem (Riemann—Roch)

Let C' be a smooth projective curve of genus g. Then
UD)—¥¢(Kc—D)=degD+1—g

for all divisors D on C.
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= We prove (D) — {(Kc — D) > deg D + 1 — g descending induction, using
the fact that if deg D > 2g — 2 the thesis follows by Riemann’s theorem.
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= We prove (D) — {(Kc — D) > deg D + 1 — g descending induction, using
the fact that if deg D > 2g — 2 the thesis follows by Riemann’s theorem.

= Induction step: assume the statement holds for D and prove it for D — P for
any P e C.

{D—-—P)—UKc—D+P)>¢D)—1—(¢(Kc—D)+1)>
>degD+1—g—2=deg(D—P)—g.
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= We prove (D) — {(Kc — D) > deg D + 1 — g descending induction, using
the fact that if deg D > 2g — 2 the thesis follows by Riemann’s theorem.

= Induction step: assume the statement holds for D and prove it for D — P for
any P e C.

{D—-—P)—UKc—D+P)>¢D)—1—(¢(Kc—D)+1)>
>degD+1—g—2=deg(D—P)—g.

= If by contradiction the first inequality is not strict, we can find
peL(D)—~L(D—-P) and ¢ € L(Kc— D+ P)—L(Kg — D).
But then we have the absurd:

div(py) + Ko + P > 0 with equality at P.
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Remarks

m For the divisor D = 0 we have seen ¢(0) = 1, and thus
1—-4(Ke)=04+1-g9g = g=LK¢).

Sometimes the latter is taken as the definition of the genus.
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Remarks

m For the divisor D = 0 we have seen ¢(0) = 1, and thus
1—-4(Ke)=04+1-g9g = g=LK¢).

Sometimes the latter is taken as the definition of the genus.
m If deg D > 2g — 2, then deg(K¢ — D) < 0 and so {(K¢ — D) = 0.

Therefore, in this case we have
¢(D)=degD+1—g.

In other words, if the divisor is large enough we can compute its dimension

just in terms of its degree and the genus of the curve.
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