Algebraic Curves and Riemann-Roch Theorem

Presented by: Nicola Dal Cin

University of Udine
Master's degree in Mathematics

 27^{th} April 2023

Algebraic Curves

In this presentation we expose the ideas behind the **algebraic** definition of the concept of **genus** for an algebraic curve over \mathbb{K} . In particular

- if C is smooth and projective over $\mathbb C$, we want that the latter coincides with the topological genus of $C(\mathbb C)$.
- We see that it will emerge algebraically by treating the group of **Divisors** of the curve.
- Finally we will concentrate on Riemann–Roch Theorem.

Plane Curves and Singularities

Algebraic plane curves correspond to the zero set of a nonconstant $C \in \mathbb{K}[x,y]$.

- If C is irreducible, V(C) is an irreducible variety in $\mathbb{A}^2_{\mathbb{K}}$ so we restrict to this case.

$$\partial_y C(P)(x-a) + \partial_y C(y-b) = 0.$$

- 4 D F 4 P F 4 P F 4 P F

Plane Curves and Singularities

Algebraic plane curves correspond to the zero set of a nonconstant $C \in \mathbb{K}[x,y]$.

- If C is irreducible, V(C) is an irreducible variety in $\mathbb{A}^2_{\mathbb{K}}$ so we restrict to this case.
- A point $P = (a, b) \in C$ smooth or simple if $\partial_x C(P) \neq 0$ or $\partial_y C(P) \neq 0$, in this case its tangent line is

$$\partial_y C(P)(x-a) + \partial_y C(y-b) = 0.$$

- Otherwise P is called a singular point, in particular: it is an ordinary singularity if its tangent cone is composed of distinct lines.
- The multiplicity $m_P(C)$ of an ordinary singularity P is the number of line in its tangent cone.

Plane Curves and Singularities

Algebraic plane curves correspond to the zero set of a nonconstant $C \in \mathbb{K}[x,y]$.

- If C is irreducible, V(C) is an irreducible variety in $\mathbb{A}^2_{\mathbb{K}}$ so we restrict to this case.
- A point $P = (a, b) \in C$ smooth or simple if $\partial_x C(P) \neq 0$ or $\partial_y C(P) \neq 0$, in this case its tangent line is

$$\partial_y C(P)(x-a) + \partial_y C(y-b) = 0.$$

- Otherwise P is called a singular point, in particular: it is an ordinary singularity if its tangent cone is composed of distinct lines.
- The multiplicity $m_P(C)$ of an ordinary singularity P is the number of line in its tangent cone.

《□》《意》《意》《意》 意》 ぐ® Nicola Dal Cin University of Udi

Plane Curves and Singularities

Algebraic plane curves correspond to the zero set of a nonconstant $C \in \mathbb{K}[x,y]$.

- If C is irreducible, V(C) is an irreducible variety in $\mathbb{A}^2_{\mathbb{K}}$ so we restrict to this case.
- A point $P = (a, b) \in C$ smooth or simple if $\partial_x C(P) \neq 0$ or $\partial_y C(P) \neq 0$, in this case its tangent line is

$$\partial_y C(P)(x-a) + \partial_y C(y-b) = 0.$$

- Otherwise P is called a singular point, in particular: it is an ordinary singularity if its tangent cone is composed of distinct lines.
- The **multiplicity** $m_P(C)$ of an ordinary singularity P is the number of lines in its tangent cone.

$$C=Y^2-X^3$$

 $E = (X^2 + Y^2)^2 + 3X^2Y - Y^3$

$$B = Y^2 - X^3 + X$$

$$D = Y^2 - X^3 - X^2$$

$$F = (X^2 + Y^2)^3 - 4X^2Y^2$$

- Notice that if P = (0,0)the multiplicity of the curve in P is the degree of its the lowest homogeneus component.
- After a change of coordinate one can use the same criterion to find the multiplicity of the other singular points.

For all plane curves F and G and all points $P \in \mathbb{A}^2_{\mathbb{K}}$ there is a unique nonnegative integer

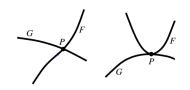
$$I_P(F,G) := \dim_{\mathbb{K}} \mathcal{O}_P(\mathbb{A}^2)/(F,G)$$

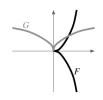
such that

Algebraic Curves

0000000000

- if F and G do not intersect $I_P(F,G)=0$,
- if F and G do not intersect properly $I_P(F,G)=\infty$,
- $I_P(F,G) \ge m_P(F)m_P(G),$
- $I_P(F,G) = I_P(F,G+AF)$ for any $A \in \mathbb{K}[x,y].$





More generally, algebraic curves are 1-dimensional varieties, so its field of rational function has transcendence degree one.

$\mathsf{Theorem}$

Any algebraic curve is birational to a plane projective curve with only ordinary singularities.

Since any algebraic curve has a smooth model, in other words:

$\mathsf{Theorem}$

Any algebraic curve curve is birational to a unique (up to isomorphism) smooth projective curve.

we concentrate on smooth projective curves.

Affine curves

We consider a smooth, irreducible, affine curve C over an algebraically closed field \mathbb{K} , and denote

- $lacksquare A(C) := \mathbb{K}[x,y]/(C)$ its affine coordinate ring.
- \blacksquare $\mathbb{K}(C):=\{f/g:f,g\in A(C) \text{ and } g\neq 0\}$ its field of rational functions
- $lacksquare \mathcal{O}_P(C)$ the local ring of P on V(C), with the (unique) maximal idea

$$\mathfrak{m}_P(C) = \{ f/g : f, g \in A(C), \text{ with } f(P) = 0, g(P) \neq 0 \}.$$

Affine curves

We consider a smooth, irreducible, affine curve C over an algebraically closed field \mathbb{K} , and denote

- $A(C) := \mathbb{K}[x,y]/(C)$ its affine coordinate ring.
- $\mathbb{K}(C) := \{f/g : f, g \in A(C) \text{ and } g \neq 0\}$ its field of **rational functions**.
- $lackbox{0.5}{\ }\mathcal{O}_P(C)$ the **local ring of** P on V(C), with the (unique) maximal ideal

$$\mathfrak{m}_P(C) = \{ f/g : f, g \in A(C), \text{ with } f(P) = 0, g(P) \neq 0 \}.$$

Affine curves

We consider a smooth, irreducible, affine curve C over an algebraically closed field \mathbb{K} , and denote

- $A(C) := \mathbb{K}[x,y]/(C)$ its affine coordinate ring.
- $\mathbb{K}(C) := \{f/g : f, g \in A(C) \text{ and } g \neq 0\}$ its field of **rational functions**.
- lacksquare $\mathcal{O}_P(C)$ the **local ring of** P on V(C), with the (unique) maximal ideal

$$\mathfrak{m}_P(C) = \{ f/g : f, g \in A(C), \text{ with } f(P) = 0, \ g(P) \neq 0 \}.$$

- a) $\mathfrak{m}_P(C) = (t)$ is principal, with $t \in \mathcal{O}_P$ a local coordinate for C in P.

- a) $\mathfrak{m}_P(C)=(t)$ is principal, with $t\in\mathcal{O}_P$ a local coordinate for C in P.
- b) Every $\varphi \in \mathbb{K}(C)$ can be written $\varphi = ct^n$, with c a unit, i.e. $c \in \mathcal{O}_P \mathfrak{m}_P$, and $n = \operatorname{ord}_P(\varphi)$.
- c) If $\varphi = f/g$ we have $\operatorname{ord}_P(\varphi) = I_P(f,C) I_P(g,C)$.
- d) In particular, $\operatorname{ord}_P : \mathbb{K}(C)^* \to \mathbb{Z}$ is a discrete valuation, and A(C) and \mathfrak{m}_P are respectively the pullbacks of $[0, \infty)$ and $(0, \infty)$.
- e) Intuitively, $\operatorname{ord}_P(\varphi)$ is grater (resp. is less) than zero if and only if φ has a zero (resp. a pole) in P.

- a) $\mathfrak{m}_P(C)=(t)$ is principal, with $t\in\mathcal{O}_P$ a local coordinate for C in P.
- b) Every $\varphi \in \mathbb{K}(C)$ can be written $\varphi = ct^n$, with c a unit, i.e. $c \in \mathcal{O}_P \mathfrak{m}_P$, and $n = \operatorname{ord}_P(\varphi)$.
- c) If $\varphi = f/g$ we have $\operatorname{ord}_P(\varphi) = I_P(f,C) I_P(g,C)$.
- d) In particular, $\operatorname{ord}_P : \mathbb{K}(C)^* \to \mathbb{Z}$ is a discrete valuation, and A(C) and \mathfrak{m}_P are respectively the pullbacks of $[0,\infty)$ and $(0,\infty)$.
- e) Intuitively, $\operatorname{ord}_P(\varphi)$ is grater (resp. is less) than zero if and only if φ has a zero (resp. a pole) in P.

- a) $\mathfrak{m}_P(C)=(t)$ is principal, with $t\in\mathcal{O}_P$ a local coordinate for C in P.
- b) Every $\varphi \in \mathbb{K}(C)$ can be written $\varphi = ct^n$, with c a unit, i.e. $c \in \mathcal{O}_P \mathfrak{m}_P$, and $n = \operatorname{ord}_P(\varphi)$.
- c) If $\varphi = f/g$ we have $\operatorname{ord}_P(\varphi) = I_P(f,C) I_P(g,C)$.
- d) In particular, $\operatorname{ord}_P : \mathbb{K}(C)^* \to \mathbb{Z}$ is a discrete valuation, and A(C) and \mathfrak{m}_P are respectively the pullbacks of $[0,\infty)$ and $(0,\infty)$.
- e) Intuitively, $\operatorname{ord}_P(\varphi)$ is grater (resp. is less) than zero if and only if φ has a zero (resp. a pole) in P.

- a) $\mathfrak{m}_P(C)=(t)$ is principal, with $t\in\mathcal{O}_P$ a local coordinate for C in P.
- b) Every $\varphi \in \mathbb{K}(C)$ can be written $\varphi = ct^n$, with c a unit, i.e. $c \in \mathcal{O}_P \mathfrak{m}_P$, and $n = \operatorname{ord}_P(\varphi)$.
- c) If $\varphi = f/g$ we have $\operatorname{ord}_P(\varphi) = I_P(f,C) I_P(g,C)$.
- d) In particular, $\operatorname{ord}_P : \mathbb{K}(C)^* \to \mathbb{Z}$ is a discrete valuation, and A(C) and \mathfrak{m}_P are respectively the pullbacks of $[0,\infty)$ and $(0,\infty)$.
- e) Intuitively, $\operatorname{ord}_P(\varphi)$ is grater (resp. is less) than zero if and only if φ has a zero (resp. a pole) in P.

Projective curves

Similarly we introduce above definitions in case of projective curves, considering S(C) the **homogeneus coordinate ring** of C as a graded ring, i.e.

$$S(C) = \bigoplus_{d>0} S_d(C).$$

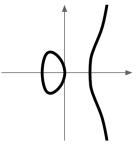
The definition of multiplicity of rational functions on C is easily extended since it is a local property.

Example

Consider the rational function $\varphi = \frac{y}{x}$ over the projective curve

$$C:Y^2Z-X^3+XZ^2$$
 , and $P=(0:0:1)\in C.$ Then

$$\operatorname{ord}_P(\varphi) = \operatorname{ord}_P(y) - \operatorname{ord}_P(x) = 1 - 2 = -1.$$



Theorem (Bézout)

Let F and G be two projective curves without common component over a ground field K, then the number of their intersections counted with multiplicity is

$$\sum_{P \in F \cap G} I_P(F, G) \le \deg F \cdot \deg G.$$

Moreover, equality holds if \mathbb{K} is algebraically closed.

Theorem (Noether)

Let F be a smooth projective curve over \mathbb{K} an algebraically closed field. Let G and H be two smooth projective curves that do not have a common component with F. Then

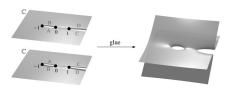
- if $I_P(F,G) \leq I_P(F,H)$ for all $P \in \mathbb{P}_2$ there are homogeneus polynomials A and B (of degrees $\deg H - \deg F$ and $\deg H - \deg G$) such that
- a) H = AF + BG:
- b) $I_P(F,H) = I_P(F,G) + I_P(F,B)$ for all $P \in \mathbb{P}_2$.

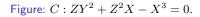
Topology of complex Curves

If we consider a smooth projective curve over \mathbb{C} , its points V(C) form a 1-dimensional complex manifold, moreover

- V(C) is compact,
- V(C) is oriented,
- V(C) is connected.

Therefore, it homeomorphic to a sphere with a finite amount of "handles", i.e. the topological **genus** of V(C).





Cell decomposition

Definition

Let \mathcal{M} be a compact 2-dimensional (real) manifold, a **cell decomposition** of \mathcal{M} , is a finite disjoint union of points, (open) lines, and (open) discs.

Figure: Three valid disjoint decompositions of $\mathbb{P}_1(\mathbb{C})$.

Euler characteristic

Algebraic Curves

Lemma

Let \mathcal{M} be a compact 2-dimensional (real) manifold. Consider a cell decomposition of \mathcal{M} consisting of σ_0 points, σ_1 lines, and σ_2 discs. The number

$$\chi := \sigma_0 - \sigma_1 + \sigma_2$$

only depends on \mathcal{M} and is called **Euler characteristic** of \mathcal{M} .

Lemma

Algebraic Curves

Let \mathcal{M} be a compact 2-dimensional (real) manifold. Consider a cell decomposition of \mathcal{M} consisting of σ_0 points, σ_1 lines, and σ_2 discs. The number

$$\chi := \sigma_0 - \sigma_1 + \sigma_2$$

only depends on \mathcal{M} and is called **Euler characteristic** of \mathcal{M} .

- From any two cell decomposition we can find a common refinement.
- Such a refinement is obtained through operations of two types:
 - 1) adding another point on a line.
 - 2) adding another line to a disc.

which do not modify χ .

Given $\mathcal M$ a connected and compact oriented 2–dimensional (real) manifold, we can build a valid cell decomposition using 4 lines and 2 points for each hole which lead to a total of

- $\sigma_0 = 2g + 2$ points,
- $\sigma_1 = 4g + 4$ lines,
- $\sigma_1 = 4$ discs.

Therefore

Algebraic Curves

$$\chi = \sigma_0 - \sigma_1 + \sigma_2 = 2 - 2g \iff g = 1 - \chi/2.$$

Theorem (Topological degree–genus formula)

A smooth curve of degree d in $\mathbb{P}_2(\mathbb{C})$ has topological genus $\binom{d-1}{2} = \frac{(d-1)(d-2)}{2}$.

Vector spaces L(D)

Proof sketch:

- Wlog $(0:1:0) \notin C$ and the projection $\pi:V(C)\to \mathbb{P}_1(\mathbb{C})$ is well defined.
- The inverse images of the points $(x:z) \in \mathbb{P}_1(\mathbb{C})$ contains d points unless Chas a multiple zero, i.e. C and $\partial_u C$ are both null there.
- Their corresponding inverse image has d-1 points.
- Since at a ramification point we have $I_P(C, \partial_u C) = 1$ we have a total of $\deg C \cdot \deg \partial_u C = d(d-1)$ ramification points of π .
- Taking a fine cell decomposition of $\mathbb{P}_1(\mathbb{C})$ containing their π -images and s.t. $\sigma_0 - \sigma_1 + \sigma_2 = 2$ and lifting it leads

$$\chi = d\sigma_0 - d(d-1) - d\sigma_1 + d\sigma_2 = 3d - d^2.$$

4 □ > 4 圖 > 4 ■ >

Summarizing

- We have seen that to every curve in $\mathbb{P}_2(\mathbb{C})$ can be assigned such a topological invariant, its genus.
- Remarkably, the topological genus of a smooth complex projective curve depends only on its algebraic degree.
- A natural question arises: "is it possible to define an algebraic genus for smooth projective curves which coincides with the topological one in case $\mathbb{K} = \mathbb{C}$?"

Summarizing

- We have seen that to every curve in $\mathbb{P}_2(\mathbb{C})$ can be assigned such a topological invariant, its genus.
- Remarkably, the topological genus of a smooth complex projective curve depends only on its algebraic degree.
- A natural question arises: "is it possible to define an algebraic genus for smooth projective curves which coincides with the topological one in case $\mathbb{K} = \mathbb{C}$?"

Summarizing

- We have seen that to every curve in $\mathbb{P}_2(\mathbb{C})$ can be assigned such a topological invariant, its genus.
- Remarkably, the topological genus of a smooth complex projective curve depends only on its algebraic degree.
- A natural question arises: "is it possible to define an algebraic genus for smooth projective curves which coincides with the topological one in case **K** = ℂ ?"

Algebraic Curves

Divisors on Curves

Let C be a smooth projective curve

- A divisor on C is a formal sum $D := \sum_{P \in C} a_P P$, where $a_P \in \mathbb{Z}$ and $a_P = 0$ for all but a finite amount of P.

$$D_1 \ge D_2 \iff D_1 - D_2 \text{ is effective}$$

$$deg : Div C \to \mathbb{Z}, \qquad Div^0C := ker(deg)$$

Divisors on Curves

Let C be a smooth projective curve

- A **divisor** on C is a formal sum $D := \sum_{P \in C} a_P P$, where $a_P \in \mathbb{Z}$ and $a_P = 0$ for all but a finite amount of P.
- A divisor $D \in \text{Div } C$ is called **effective** if $a_P \geq 0$ for all $P \in C$.
- For $D_1, D_2 \in \text{Div } C$ we write

$$D_1 \ge D_2 \iff D_1 - D_2 \text{ is effective}$$

■ The **degree** of a divisor $D := \sum_{P \in C} a_P P$ is $\deg D := \sum_{P \in C} a_P$ and we denote

$$deg : Div C \to \mathbb{Z}, \qquad Div^0C := ker(deg).$$

Divisors on Curves

Algebraic Curves

Let C be a smooth projective curve

- **A** divisor on C is a formal sum $D:=\sum_{P\in C}a_PP$, where $a_P\in\mathbb{Z}$ and $a_P=0$ for all but a finite amount of P.
- A divisor $D \in \text{Div } C$ is called **effective** if $a_P > 0$ for all $P \in C$.
- For $D_1, D_2 \in \text{Div } C$ we write

$$D_1 \ge D_2 \iff D_1 - D_2$$
 is effective.

$$\deg: \operatorname{Div} C \to \mathbb{Z}, \qquad \operatorname{Div}^0 C := \ker(\deg).$$

Divisors on Curves

Algebraic Curves

Let C be a smooth projective curve

- **A** divisor on C is a formal sum $D:=\sum_{P\in C}a_PP$, where $a_P\in\mathbb{Z}$ and $a_P=0$ for all but a finite amount of P.
- A divisor $D \in \text{Div } C$ is called **effective** if $a_P > 0$ for all $P \in C$.
- For $D_1, D_2 \in \text{Div } C$ we write

$$D_1 \ge D_2 \iff D_1 - D_2$$
 is effective.

■ The **degree** of a divisor $D := \sum_{P \in C} a_P P$ is $\deg D := \sum_{P \in C} a_P$ and we denote

$$deg : Div C \to \mathbb{Z}, \qquad Div^0C := ker(deg).$$

Rational functions and divisors

Having defined the multiplicities of polynomials and rational functions on curves allows to introduce a particular class of divisors.

$$\operatorname{div} f := \sum_{P \in C} \operatorname{ord}_P(f) \cdot P \quad \geq 0$$

$$\operatorname{div}\,\varphi:=\sum_{P\in C}\operatorname{ord}_P(\varphi)\cdot P\quad\in\operatorname{Div}^0C$$

Rational functions and divisors

Having defined the multiplicities of polynomials and rational functions on curves allows to introduce a particular class of divisors.

■ For a non-zero polynomial $f \in S(C) - \{0\}$, the **divisor of** f is

$$\operatorname{div} f := \sum_{P \in C} \operatorname{ord}_P(f) \cdot P \quad \geq 0$$

$$\operatorname{div}\,\varphi:=\sum_{P\in C}\operatorname{ord}_P(\varphi)\cdot P\quad\in\operatorname{Div}^0C$$

Rational functions and divisors

Having defined the multiplicities of polynomials and rational functions on curves allows to introduce a particular class of divisors.

■ For a non-zero polynomial $f \in S(C) - \{0\}$, the **divisor of** f is

$$\operatorname{div} f := \sum_{P \in C} \operatorname{ord}_P(f) \cdot P \quad \geq 0$$

■ Similarly for a non–zero rational function $\varphi \in \mathbb{K}(C)^*$, the **divisor of** φ is

$$\operatorname{div}\,\varphi:=\sum_{P\in C}\operatorname{ord}_P(\varphi)\cdot P\quad\in\operatorname{Div}^0C.$$

Rational functions and divisors

Since ord P is a valuation we have that

$$\operatorname{div}(fg) = \sum_{P \in C} \operatorname{ord}_P(fg) \cdot P = \sum_{P \in C} (\operatorname{ord}_P(f) + \operatorname{ord}_P(g)) \cdot P = \operatorname{div} \, f + \operatorname{div} \, g,$$

and similarly

Algebraic Curves

$$\operatorname{div}(\varphi\psi) = \operatorname{div}(\psi) + \operatorname{div}(\psi).$$

In particular

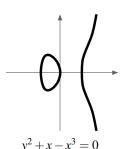
$$\operatorname{\mathsf{div}}: \mathbb{K}^*(C) \to \operatorname{\mathsf{Div}} C$$

is a group homomorphism.

Consider the rational function $\varphi = \frac{y}{x}$ over the projective curve

$$C: Y^2Z - X^3 + XZ^2$$
, then

$$\begin{aligned} \operatorname{div}\,\varphi &= (0:0:1) + (-1:0:1) + (1:0:1) - 2(0:0:1) - (0:1:0) \\ &= -(0:0:1) + (-1:0:1) + (1:0:1) - (0:1:0) \end{aligned}$$



Bézout and Nother theorems for divisors

Notice that for f and φ respectively a non-zero polynomial and rational function we have

$$\deg(\operatorname{div} f) = \sum_{P \in C} \operatorname{ord}_P(f) = \sum_{P \in C} I_P(C, f) = \deg C \cdot \deg f,$$

while writing $\varphi = h/g$, with $h, g \in S_d(C)$ and $g \neq 0$ we get

$$\deg(\operatorname{div}\varphi) = \deg(\operatorname{div}h) - \deg(\operatorname{div}g) = \deg C \cdot (d-d) = 0.$$

In particular

Algebraic Curves

$$\operatorname{div}: \mathbb{K}^*(C) \to \operatorname{Div}^0 C \subset \operatorname{Div} C.$$

Nicola Dal Cin

Bézout and Nother theorems for divisors

Proposition (Noether's Theorem for divisors)

If C is a projective curve and $g,h\in S(C)$ non–zero homogeneous polynomials with div $g\leq$ div h. Then, there exists a homogeneous $b\in S(F)$ of degree $\deg h-\deg g$ such that

$$h = bg$$
 in $S(F)$, and div $h = \text{div } b + \text{div } g$.

Corollary

The only rational functions everywhere regular on a projective curve ${\cal C}$ are constants, i.e.

$$\bigcap_{P \in C} \mathcal{O}_P = \mathbb{K}$$

Nicola Dal Cin
Algebraic Curves and Riemann-Roch Theorem

• A divisor on C is called **principal** if it is the divisor of a certain $\varphi \in \mathbb{K}(F)^*$, i.e.

Prin
$$C := \{ \text{div } \varphi : \varphi \in \mathbb{K}(F)^* \} \subset \text{Div } {}^0C \subset \text{Div } C.$$

The quotient group

$$Pic C := Div C/Prin C$$

is called the **Picard group** or the group of **divisor classes** of C.

• Two divisors D_1 and D_2 are said **linearly equivalent** if they define the same class, i.e

$$D_1 \sim D_2 \iff D_1 - D_2 = \operatorname{div} \varphi.$$

Nicola Dal Cin

Algebraic Curves

Example

If C is a projective line or a conic, then all divisors of $\mathrm{Div}^0 C$ are linearly equivalent, i.e. $\mathrm{Pic}^0 C := \mathrm{Div}^0 C/\mathrm{Prin}\ C$ is trivial.

For curves of higher degree, this is never the case. In fact

Proposition

If $\deg C \geq 3$ then $P \not\sim Q$ for any distinct points $P,Q \in C$. In particular $\mathrm{Pic}^0 C$ is not trivial.

- Determining "how many" functions there are on a projective curve is an interesting task since one expects that this feature reflects some intrinsic properties of the curve.

Nicola Dal Cin

- Determining "how many" functions there are on a projective curve is an interesting task since one expects that this feature reflects some intrinsic properties of the curve.
- With this aim, we are interested in studying rational function which are regular everywhere but is a finite set of points where we allow poles (or zeros) of a certain order.

If $D = \sum_{P \in C} a_P \cdot P$, we define

$$\begin{split} L(D) &:= \{ \varphi \in \mathbb{K}(C)^* \ : \ \operatorname{div} \ \varphi + D \geq 0 \} \cup \{ 0 \} \\ &= \{ \varphi \in \mathbb{K}(C)^* \ : \ \operatorname{ord}_P(\varphi) \geq -a_P \ \text{for all} \ P \in C \} \end{split}$$

the space of rational functions such that

- 1) φ may have a pole of order at most a_P for all P such that $a_P > 0$,
- 2) φ must have a zero of order at least $-a_P$ for all P such that $a_P < 0$.

Remark

Our aim is to determine $\ell(D) := \dim_{\mathbb{K}} L(D) \in \mathbb{N} \cup \{\infty\}$, which is called **dimension** of the divisor D.

Remark

a) If D=0 the space

$$L(D) = L(0) = \{ \varphi \in \mathbb{K}(C)^* : \text{div } \varphi > 0 \} \cup \{ 0 \} = \mathbb{K}$$

and so $\ell(0) = 1$.

- b) If $\deg D < 0$, we have $L(D) = \{0\}$ and $\ell(D) = 0$.
- c) If $D \leq D'$ then $L(D) \subseteq L(D')$ and $\ell(D) \leq \ell(D')$.
- d) If $D \sim D'$ are two linearly equivalent divisors on C, then $\ell(D) = \ell(D')$.

Lemma

Let D be a divisor on a projective curve C. Then

- (i) for any point $P \in C$ we have $\ell(D+P) = \ell(D)$ or $\ell(D+P) = \ell(D) + 1$.
- For any divisor $D' \geq D$ we have $\ell(D) \leq \ell(D') \leq \ell(D) + \deg(D' D)$.
- If $\deg D > 0$ then $\ell(D) < \deg D + 1 < +\infty$.

Lemma

Algebraic Curves

Let D be a divisor on a projective curve C. Then

- a) for any point $P \in C$ we have $\ell(D+P) = \ell(D)$ or $\ell(D+P) = \ell(D) + 1$.
- b) For any divisor $D' \geq D$ we have $\ell(D) \leq \ell(D') \leq \ell(D) + \deg(D' D)$.
- c) If $\deg D > 0$ then $\ell(D) < \deg D + 1 < +\infty$.

Proof.

Let $D = \sum_{P \in C} a_P \cdot P$ and consider $\Phi : L(D+P) \ni \varphi \mapsto (t^{a_P+1}\varphi)(P) \in \mathbb{K}$.

Observing

$$\Phi(\varphi) = 0 \quad \Longleftrightarrow \quad \operatorname{ord}_P(t^{a_P+1}\varphi) > 0 \quad \Longleftrightarrow \quad \operatorname{ord}_P(\varphi) + a_P \ge 0$$

we deduce that $\ker \Phi = L(D)$, and $L(D+P)/L(D) \cong Im \Phi \subset \mathbb{K}$.

Proposition

If $\deg D \ge 0$ on a projective curve of degree 1 or 2 then $\ell(D) = \deg D + 1$.

Indeed, recall that Pic $C\cong \mathbb{Z}/\mathrm{Pic}^0C$ and that in this case $\mathrm{Pic}^0C=\{0\}.$ If P and Q are distinct

$$P \sim Q \quad \Longleftrightarrow \quad \operatorname{div} \, \varphi = Q - P \quad \Longleftrightarrow \quad \operatorname{div} \, \varphi^k = kQ - kP$$

and therefore

$$\begin{cases} \varphi^k + kP = kQ \ge 0 \\ \varphi^k + (k-1)P = kQ - P \not\ge 0 \end{cases} \implies \varphi^k \in L(kP) - L((k-1)P).$$

We conclude $\mathbb{K}=L(0)\subset L(P)\subset \cdots \subset L(nP)$, and so $\ell(nP)=n+1$. Since every divisor D of degree n is $D\sim nP$ we conclude.

Proposition

If $\deg C \geq 3$ then

- a) for every point $\ell(P) = 1$.
- b) if $P \neq Q$, we have $\ell(P Q) = 0$.
 - If $\varphi \in L(P)$, it must have a pole of order 1 in P and be regular elsewhere, and so div $\varphi = Q P$. By above proposition Q = P and so $L(P) = \mathbb{K}$.
 - We have $L(P-Q) \subset L(P) = \mathbb{K}$ and so $L(P-Q) = \{0\}$.

Proposition

If $\deg C \geq 3$ then

- a) for every point $\ell(P) = 1$.
- b) if $P \neq Q$, we have $\ell(P Q) = 0$.
 - If $\varphi \in L(P)$, it must have a pole of order 1 in P and be regular elsewhere, and so div $\varphi = Q P$. By above proposition Q = P and so $L(P) = \mathbb{K}$.
 - lacksquare We have $L(P-Q)\subset L(P)=\mathbb{K}$ and so $L(P-Q)=\{0\}.$

If $\deg C > 3$ then

- a) for every point $\ell(P) = 1$.
- b) if $P \neq Q$, we have $\ell(P Q) = 0$.

Remark

If $\deg C \geq 3$, for any two distinct points $P, Q \in C$ we have

$$\ell(0) = 1 \quad \text{and} \quad \ell(P - Q) = 0,$$

so in general $\ell(D)$ does not only depend on $\deg D$.

Lemma

If C is a projective curve of degree d (wlog $C \neq Z$). Then for all $n \geq d$ for the divisor $D := n \cdot \text{div } Z$ we have:

a) There is an exact sequence

$$0 \longrightarrow \mathbb{K}[X,Y,Z]_{n-d} \xrightarrow{\cdot C} \mathbb{K}[X,Y,Z]_n \xrightarrow{\dot{z}Z^n} L(D) \longrightarrow 0.$$

b)
$$\ell(D) = \deg D + 1 - \binom{d-1}{2}$$
.

Riemann's Theorem and degree-genus formula

Theorem (Riemann)

Let C be a smooth, irreducible projective curve of degree d.

 $lue{}$ There is a unique smallest integer g, depending only on C, such that

$$\ell(D) \ge \deg D + 1 - g,\tag{1}$$

Vector spaces L(D)

for any divisor $D \in Div C$. Such g is called **(algebraic) genus** of C (or of its function field).

Theorem

If C is a smooth projective plane curve of degree d, its algebraic genus is

$$g = \frac{(d-1)(d-2)}{2}$$
.

(2)

Proof.

We show that $g:=\binom{d-1}{2}$ satisfies $\ell(D) \geq \deg D + 1 - g$ for all D. Notice

- If (1) holds for D it holds for any linearly equivalent $D' \sim D$;
- If (1) holds for D it holds for any D' < D, in fact

$$\ell(D') \le \ell(D) - \deg(D - D') \le \deg D + 1 - g - \deg(D - D') = \deg D' + 1 - g.$$

0000000000000

We can write a divisor on C as $D = P_1 + \cdots + P_n - E$, where E is an effective divisor and $P_i \in C$. Choosing n lines l_i through P_i (not equal to C) we define

$$D' := D + \operatorname{div} \frac{Z^n}{l_1 \cdots l_n} \quad \sim D$$

which satisfies

$$D' = P_1 + \dots + P_n - E + \operatorname{div} Z^n - \sum_{i=1}^n \operatorname{div} l_i \le \operatorname{div} Z^n.$$

- If $\mathbb{K} = \mathbb{C}$ the algebraic genus of a smooth projective plane curve coincides with its topological one.

$$g = \frac{(d-1)(d-2)}{2} - \sum_{P \in S} \frac{m_P(m_P - 1)}{2},$$

Nicola Dal Cin

4 D > 4 A > 4 B > 4 B

A few remarks

- If $\mathbb{K} = \mathbb{C}$ the algebraic genus of a smooth projective plane curve coincides with its topological one.
- We can define the genus of a curve as the genus of the smooth projective curve that is birational to it.

$$g = \frac{(d-1)(d-2)}{2} - \sum_{P \in S} \frac{m_P(m_P - 1)}{2},$$

Nicola Dal Cin

4 D > 4 A > 4 B > 4 B

A few remarks

- If $\mathbb{K} = \mathbb{C}$ the algebraic genus of a smooth projective plane curve coincides with its topological one.
- We can define the genus of a curve as the genus of the smooth projective curve that is birational to it.
- The genus of a curve is (tautologically) a birational invariant.

$$g = \frac{(d-1)(d-2)}{2} - \sum_{P \in S} \frac{m_P(m_P - 1)}{2},$$

Nicola Dal Cin

4 D > 4 A > 4 B > 4 B

- If $\mathbb{K}=\mathbb{C}$ the algebraic genus of a smooth projective plane curve coincides with its topological one.
- We can define the genus of a curve as the genus of the smooth projective curve that is birational to it.
- The genus of a curve is (tautologically) a birational invariant.
- In case C is a projective plane curve of degree d with only ordinary singularities, the "degree-genus formula" must be modified as

$$g = \frac{(d-1)(d-2)}{2} - \sum_{P \in S} \frac{m_P(m_P - 1)}{2},$$

where S is the set of singular points and m_P the multiplicity of C at P.

Nicola Dal Cin

We have proved the following bounds for the dimension of an effective divisor $D \in \operatorname{Div} C$

$$\deg D + 1 - g \le \ell(D) \le \deg D + 1.$$

- $lue{}$ Notice that we can not expect a formula only depending on $\deg D$.
- It turns out that the difference between $\ell(D)$ and $\deg D + 1 g$ can be seen as the dimension of another divisor $D' \in \operatorname{Div} C$ related to D.

マートマラトマラトマラト ラー シュー University of Udine

Canonical Divisor

We have proved the following bounds for the dimension of an effective divisor $D \in \operatorname{Div} C$

$$\deg D + 1 - g \le \ell(D) \le \deg D + 1.$$

- $lue{}$ Notice that we can not expect a formula only depending on $\deg D$.
- It turns out that the difference between $\ell(D)$ and $\deg D + 1 g$ can be seen as the dimension of another divisor $D' \in \text{Div } C$ related to D.

Canonical Divisor

Definition

Let C be a projective curve of degree d. For any line l (not equal to C) we define

Vector spaces L(D)

$$K_C := (d-3) \operatorname{div} l \in \operatorname{Pic} F$$

the canonical divisor (class) of C.

Notice that this definition does not depend on the chosen line since every two lines are linearly equivalent.



Lemma

Algebraic Curves

For any projective curve C of genus g we have $\deg K_C = 2g - 2$.

Proof.

$$\deg K_C = (d-3) = \deg(\operatorname{div} l) = (d-3)d = 2\binom{d-1}{2} - 2 = 2g - 2.$$

Lemma

For any point P on a projective curve C we have $\ell(K_C + P) = \ell(K_C)$.

Remark

If $\mathbb{K}=\mathbb{C}$ the latter is a direct consequence of the Residue Theorem for differential forms. Indeed, a form ω can not have exactly one non–zero residue and so for any $\varphi \in \mathbb{K}(C)$

$$\operatorname{div}\,(\varphi\omega)+P\geq 0\quad\Longrightarrow\quad\operatorname{div}\,(\varphi\omega)\geq 0.$$

In other words $L(\operatorname{div} \omega + P) = L(\operatorname{div} \omega)$.

Riemann-Roch theorem

Theorem (Riemann-Roch)

Let C be a smooth projective curve of genus g. Then

$$\ell(D) - \ell(K_C - D) = \deg D + 1 - g$$

for all divisors D on C.

Proof.

- We prove $\ell(D) \ell(K_C D) \ge \deg D + 1 q$ descending induction, using the fact that if $\deg D > 2q - 2$ the thesis follows by Riemann's theorem.

$$\ell(D-P) - \ell(K_C - D + P) \ge \ell(D) - 1 - (\ell(K_C - D) + 1) \ge$$

 $\ge \deg D + 1 - g - 2 = \deg(D - P) - g$

$$\varphi \in L(D) - L(D-P)$$
 and $\psi \in L(K_C - D + P) - L(K_C - D)$.

Proof.

- We prove $\ell(D) \ell(K_C D) \ge \deg D + 1 q$ descending induction, using the fact that if $\deg D > 2q - 2$ the thesis follows by Riemann's theorem.
- Induction step: assume the statement holds for D and prove it for D-P for any $P \in C$.

$$\ell(D-P) - \ell(K_C - D + P) \ge \ell(D) - 1 - (\ell(K_C - D) + 1) \ge$$

$$\ge \deg D + 1 - g - 2 = \deg(D - P) - g.$$

$$\varphi \in L(D) - L(D-P)$$
 and $\psi \in L(K_C - D + P) - L(K_C - D)$.

- We prove $\ell(D) \ell(K_C D) \ge \deg D + 1 q$ descending induction, using the fact that if $\deg D > 2q - 2$ the thesis follows by Riemann's theorem.
- Induction step: assume the statement holds for D and prove it for D-P for any $P \in C$.

$$\ell(D-P) - \ell(K_C - D + P) \ge \ell(D) - 1 - (\ell(K_C - D) + 1) \ge$$

 $\ge \deg D + 1 - g - 2 = \deg(D - P) - g.$

If by contradiction the first inequality is not strict, we can find

$$\varphi \in L(D) - L(D-P)$$
 and $\psi \in L(K_C - D + P) - L(K_C - D)$.

But then we have the absurd:

$$\operatorname{div}(\varphi\psi) + K_C + P \ge 0$$
 with equality at P .

Remarks

lacksquare For the divisor D=0 we have seen $\ell(0)=1,$ and thus

$$1 - \ell(K_C) = 0 + 1 - g \implies g = \ell(K_C).$$

Sometimes the latter is taken as the definition of the genus.

If $\deg D > 2g - 2$, then $\deg(K_C - D) < 0$ and so $\ell(K_C - D) = 0$. Therefore, in this case we have

$$\ell(D) = \deg D + 1 - g.$$

In other words, if the divisor is large enough we can compute its dimension just in terms of its degree and the genus of the curve.

■ For the divisor D=0 we have seen $\ell(0)=1$, and thus

$$1 - \ell(K_C) = 0 + 1 - g \quad \Longrightarrow \quad g = \ell(K_C).$$

Sometimes the latter is taken as the definition of the genus.

If deg D > 2g - 2, then deg $(K_C - D) < 0$ and so $\ell(K_C - D) = 0$. Therefore, in this case we have

$$\ell(D) = \deg D + 1 - g.$$

In other words, if the divisor is large enough we can compute its dimension just in terms of its degree and the genus of the curve.

References

Algebraic Curves

- R. Hartshorne, *Algebraic geometry*, vol. 52. Springer Science & Business Media, 2013.
 - M. Hindry and J. H. Silverman, *Diophantine geometry: an introduction*, vol. 201.
 - Springer Science & Business Media, 2013.
- J. Halliday, "The riemann-roch theorem and serre duality," 2015.

