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Overview

In this presentation we expose the ideas behind the algebraic definition of the

concept of genus for an algebraic curve over K. In particular

if C is smooth and projective over C, we want that the latter coincides with

the topological genus of C(C).

We see that it will emerge algebraically by treating the group of Divisors of

the curve.

Finally we will concentrate on Riemann–Roch Theorem.
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Plane Curves and Singularities

Algebraic plane curves correspond to the zero set of a nonconstant C ∈ K[x, y].

If C is irreducible, V (C) is an irreducible variety in A2
K so we restrict to this

case.

A point P = (a, b) ∈ C smooth or simple if ∂xC(P ) ̸= 0 or ∂yC(P ) ̸= 0, in

this case its tangent line is

∂yC(P )(x− a) + ∂yC(y − b) = 0.

Otherwise P is called a singular point, in particular: it is an ordinary
singularity if its tangent cone is composed of distinct lines.

The multiplicity mP (C) of an ordinary singularity P is the number of lines

in its tangent cone.
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Notice that if P = (0, 0)

the multiplicity of the curve

in P is the degree of its the

lowest homogeneus

component.

After a change of

coordinate one can use the

same criterion to find the

multiplicity of the other

singular points.
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Intersection numbers

For all plane curves F and G and all points

P ∈ A2
K there is a unique nonnegative integer

IP (F,G) := dimK OP (A2)/(F,G)

such that

if F and G do not intersect IP (F,G) = 0,

if F and G do not intersect properly

IP (F,G) = ∞,

IP (F,G) ≥ mP (F )mP (G),

IP (F,G) = IP (F,G+AF ) for any

A ∈ K[x, y].
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More generally, algebraic curves are 1–dimensional varieties, so its field of rational

function has transcendence degree one.

Theorem
Any algebraic curve is birational to a plane projective curve with only ordinary

singularities.

Since any algebraic curve has a smooth model, in other words:

Theorem

Any algebraic curve curve is birational to a unique (up to isomorphism) smooth

projective curve.

we concentrate on smooth projective curves.
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Affine curves

We consider a smooth, irreducible, affine curve C over an algebraically closed field

K, and denote

A(C) := K[x, y]/(C) its affine coordinate ring.

K(C) := {f/g : f, g ∈ A(C) and g ̸= 0} its field of rational functions.

OP (C) the local ring of P on V (C), with the (unique) maximal ideal

mP (C) = {f/g : f, g ∈ A(C), with f(P ) = 0, g(P ) ̸= 0}.
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Discrete valuation rings OP

Recall that, since every point of C is regular, any OP is a discrete valuation ring:

a) mP (C) = (t) is principal, with t ∈ OP a local coordinate for C in P .

b) Every φ ∈ K(C) can be written φ = ctn, with c a unit, i.e. c ∈ OP −mP ,

and n = ordP (φ).

c) If φ = f/g we have ordP (φ) = IP (f, C)− IP (g, C).

d) In particular, ordP : K(C)∗ → Z is a discrete valuation, and A(C) and mP

are respectively the pullbacks of [0,∞) and (0,∞).

e) Intuitively, ordP (φ) is grater (resp. is less) than zero if and only if φ has a

zero (resp. a pole) in P.
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Projective curves

Similarly we introduce above definitions in case of projective curves, considering

S(C) the homogeneus coordinate ring of C as a graded ring, i.e.

S(C) =
⊕
d≥0

Sd(C).

The definition of multiplicity of rational functions on C is easily extended since it

is a local property.
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Example

Consider the rational function φ = y
x over the projective curve

C : Y 2Z −X3 +XZ2, and P = (0 : 0 : 1) ∈ C. Then

ordP (φ) = ordP (y)− ordP (x) = 1− 2 = −1.
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Theorem (Bézout)

Let F and G be two projective curves without common component over a ground

field K, then the number of their intersections counted with multiplicity is∑
P∈F∩G

IP (F,G) ≤ degF · degG.

Moreover, equality holds if K is algebraically closed.
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Theorem (Noether)

Let F be a smooth projective curve over K an algebraically closed field. Let G

and H be two smooth projective curves that do not have a common component

with F . Then

if IP (F,G) ≤ IP (F,H) for all P ∈ P2 there are homogeneus polynomials A

and B (of degrees degH − degF and degH − degG) such that

a) H = AF +BG;

b) IP (F,H) = IP (F,G) + IP (F,B) for all P ∈ P2.
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Topology of complex Curves

If we consider a smooth projective curve over C, its points V (C) form a

1–dimensional complex manifold, moreover

V (C) is compact,

V (C) is oriented,

V (C) is connected.

Therefore, it homeomorphic to a

sphere with a finite amount of

"handles", i.e. the topological
genus of V (C). Figure: C : ZY 2 + Z2X −X3 = 0.
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Topological genus of complex Curves
Cell decomposition

Definition

Let M be a compact 2–dimensional (real) manifold, a cell decomposition of M,

is a finite disjoint union of points, (open) lines, and (open) discs.

Figure: Three valid disjoint decompositions of P1(C).
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Topological genus of complex Curves
Euler characteristic

Lemma

Let M be a compact 2–dimensional (real) manifold. Consider a cell

decomposition of M consisting of σ0 points, σ1 lines, and σ2 discs. The number

χ := σ0 − σ1 + σ2

only depends on M and is called Euler characteristic of M.
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Euler characteristic

Lemma

Let M be a compact 2–dimensional (real) manifold. Consider a cell

decomposition of M consisting of σ0 points, σ1 lines, and σ2 discs. The number

χ := σ0 − σ1 + σ2

only depends on M and is called Euler characteristic of M.

From any two cell decomposition we can find a common refinement.

Such a refinement is obtained through operations of two types:

1) adding another point on a line,

2) adding another line to a disc,

which do not modify χ.
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Relation between g and χ

Given M a connected and compact oriented 2–dimensional (real) manifold, we

can build a valid cell decomposition using 4 lines and 2 points for each hole which

lead to a total of

σ0 = 2g + 2 points,

σ1 = 4g + 4 lines,

σ1 = 4 discs.

Therefore

χ = σ0 − σ1 + σ2 = 2− 2g ⇐⇒ g = 1− χ/2.
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Theorem (Topological degree–genus formula)

A smooth curve of degree d in P2(C) has topological genus
(
d−1
2

)
= (d−1)(d−2)

2 .

Proof sketch:

Wlog (0 : 1 : 0) ̸∈ C and the projection π : V (C) → P1(C) is well defined.

The inverse images of the points (x : z) ∈ P1(C) contains d points unless C

has a multiple zero, i.e. C and ∂yC are both null there.

Their corresponding inverse image has d− 1 points.

Since at a ramification point we have IP (C, ∂yC) = 1 we have a total of

degC · deg ∂yC = d(d− 1) ramification points of π.

Taking a fine cell decomposition of P1(C) containing their π-images and s.t.

σ0 − σ1 + σ2 = 2 and lifting it leads

χ = dσ0 − d(d− 1)− dσ1 + dσ2 = 3d− d2.
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Topological genus of complex Curves

Summarizing

We have seen that to every curve in P2(C) can be assigned such a

topological invariant, its genus.

Remarkably, the topological genus of a smooth complex projective curve

depends only on its algebraic degree.

A natural question arises: "is it possible to define an algebraic genus for

smooth projective curves which coincides with the topological one in case

K = C ?"
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Divisors on Curves

Let C be a smooth projective curve

A divisor on C is a formal sum D :=
∑

P∈C aPP , where aP ∈ Z and aP = 0

for all but a finite amount of P.

A divisor D ∈ Div C is called effective if aP ≥ 0 for all P ∈ C.

For D1, D2 ∈ Div C we write

D1 ≥ D2 ⇐⇒ D1 −D2 is effective.

The degree of a divisor D :=
∑

P∈C aPP is degD :=
∑

P∈C aP and we

denote

deg : Div C → Z, Div0C := ker(deg).
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Rational functions and divisors

Having defined the multiplicities of polynomials and rational functions on curves

allows to introduce a particular class of divisors.

For a non–zero polynomial f ∈ S(C)− {0}, the divisor of f is

div f :=
∑
P∈C

ordP (f) · P ≥ 0

Similarly for a non–zero rational function φ ∈ K(C)∗, the divisor of φ is

div φ :=
∑
P∈C

ordP (φ) · P ∈ Div0C.
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Rational functions and divisors

Since ordP is a valuation we have that

div(fg) =
∑
P∈C

ordP (fg) · P =
∑
P∈C

(ordP (f) + ordP (g)) · P = div f + div g,

and similarly

div(φψ) = div(ψ) + div(ψ).

In particular

div : K∗(C) → Div C

is a group homomorphism.
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Example

Consider the rational function φ = y
x over the projective curve

C : Y 2Z −X3 +XZ2, then

div φ = (0 : 0 : 1) + (−1 : 0 : 1) + (1 : 0 : 1)− 2(0 : 0 : 1)− (0 : 1 : 0)

= −(0 : 0 : 1) + (−1 : 0 : 1) + (1 : 0 : 1)− (0 : 1 : 0)
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Bézout and Nother theorems for divisors

Notice that for f and φ respectively a non–zero polynomial and rational function

we have

deg(div f) =
∑
P∈C

ordP (f) =
∑
P∈C

IP (C, f) = degC · deg f,

while writing φ = h/g, with h, g ∈ Sd(C) and g ̸= 0 we get

deg(div φ) = deg(div h)− deg(div g) = degC · (d− d) = 0.

In particular

div : K∗(C) → Div0C ⊂ Div C.
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Bézout and Nother theorems for divisors

Proposition (Noether’s Theorem for divisors)

If C is a projective curve and g, h ∈ S(C) non–zero homogeneous polynomials

with div g ≤ div h. Then, there exists a homogeneous b ∈ S(F ) of degree

deg h− deg g such that

h = bg in S(F ), and div h = div b+ div g.

Corollary

The only rational functions everywhere regular on a projective curve C are

constants, i.e. ⋂
P∈C

OP = K

Nicola Dal Cin University of Udine
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Divisor classes and Picard group

A divisor on C is called principal if it is the divisor of a certain φ ∈ K(F )∗,

i.e.

Prin C := {div φ : φ ∈ K(F )∗} ⊂ Div 0C ⊂ Div C.

The quotient group

Pic C := Div C/Prin C

is called the Picard group or the group of divisor classes of C.

Two divisors D1 and D2 are said linearly equivalent if they define the same

class, i.e

D1 ∼ D2 ⇐⇒ D1 −D2 = div φ.
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Divisor classes and Picard group

Example

If C is a projective line or a conic, then all divisors of Div0C are linearly

equivalent, i.e. Pic0C := Div0C/Prin C is trivial.

For curves of higher degree, this is never the case. In fact

Proposition

If degC ≥ 3 then P ̸∼ Q for any distinct points P,Q ∈ C. In particular Pic0C is

not trivial.
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Vector spaces L(D)

Determining "how many" functions there are on a projective curve is an

interesting task since one expects that this feature reflects some intrinsic

properties of the curve.

With this aim, we are interested in studying rational function which are

regular everywhere but is a finite set of points where we allow poles (or zeros)

of a certain order.
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Vector spaces L(D)

If D =
∑

P∈C aP · P , we define

L(D) := {φ ∈ K(C)∗ : div φ+D ≥ 0} ∪ {0}

= {φ ∈ K(C)∗ : ordP (φ) ≥ −aP for all P ∈ C}

the space of rational functions such that

1) φ may have a pole of order at most aP for all P such that aP > 0,

2) φ must have a zero of order at least −aP for all P such that aP < 0.

Remark

Our aim is to determine ℓ(D) := dimK L(D) ∈ N ∪ {∞}, which is called

dimension of the divisor D.
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Remark
a) If D = 0 the space

L(D) = L(0) = {φ ∈ K(C)∗ : div φ ≥ 0} ∪ {0} = K

and so ℓ(0) = 1.

b) If degD < 0, we have L(D) = {0} and ℓ(D) = 0.

c) If D ≤ D′ then L(D) ⊆ L(D′) and ℓ(D) ≤ ℓ(D′).

d) If D ∼ D′ are two linearly equivalent divisors on C, then ℓ(D) = ℓ(D′).
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Lemma
Let D be a divisor on a projective curve C. Then

(i) for any point P ∈ C we have ℓ(D + P ) = ℓ(D) or ℓ(D + P ) = ℓ(D) + 1.

(ii) For any divisor D′ ≥ D we have ℓ(D) ≤ ℓ(D′) ≤ ℓ(D) + deg(D′ −D).

(iii) If degD ≥ 0 then ℓ(D) ≤ degD + 1 < +∞.
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Lemma
Let D be a divisor on a projective curve C. Then

a) for any point P ∈ C we have ℓ(D + P ) = ℓ(D) or ℓ(D + P ) = ℓ(D) + 1.

b) For any divisor D′ ≥ D we have ℓ(D) ≤ ℓ(D′) ≤ ℓ(D) + deg(D′ −D).

c) If degD ≥ 0 then ℓ(D) ≤ degD + 1 < +∞.

Proof.

Let D =
∑

P∈C aP · P and consider Φ : L(D + P ) ∋ φ 7→ (taP+1φ)(P ) ∈ K.
Observing

Φ(φ) = 0 ⇐⇒ ordP (taP+1φ) > 0 ⇐⇒ ordP (φ) + aP ≥ 0

we deduce that kerΦ = L(D), and L(D + P )/L(D) ∼= ImΦ ⊆ K.
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Proposition

If degD ≥ 0 on a projective curve of degree 1 or 2 then ℓ(D) = degD + 1.

Indeed, recall that Pic C ∼= Z/Pic0C and that in this case Pic0C = {0}.
If P and Q are distinct

P ∼ Q ⇐⇒ div φ = Q− P ⇐⇒ div φk = kQ− kP

and thereforeφk + kP = kQ ≥ 0

φk + (k − 1)P = kQ− P ̸≥ 0
=⇒ φk ∈ L(kP )− L((k − 1)P ).

We conclude K = L(0) ⊂ L(P ) ⊂ · · · ⊂ L(nP ), and so ℓ(nP ) = n+ 1. Since

every divisor D of degree n is D ∼ nP we conclude.
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Proposition

If degC ≥ 3 then

a) for every point ℓ(P ) = 1.

b) if P ̸= Q, we have ℓ(P −Q) = 0.

If φ ∈ L(P ), it must have a pole of order 1 in P and be regular elsewhere,

and so div φ = Q− P . By above proposition Q = P and so L(P ) = K.

We have L(P −Q) ⊂ L(P ) = K and so L(P −Q) = {0}.
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Proposition

If degC ≥ 3 then

a) for every point ℓ(P ) = 1.

b) if P ̸= Q, we have ℓ(P −Q) = 0.

Remark
If degC ≥ 3, for any two distinct points P,Q ∈ C we have

ℓ(0) = 1 and ℓ(P −Q) = 0,

so in general ℓ(D) does not only depend on degD.
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Lemma

If C is a projective curve of degree d (wlog C ̸= Z). Then for all n ≥ d for the

divisor D := n · div Z we have:

a) There is an exact sequence

0 −→ K[X,Y, Z]n−d
·C−−→ K[X,Y, Z]n

÷Zn

−−−→ L(D) −→ 0.

b) ℓ(D) = degD + 1−
(
d−1
2

)
.
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Riemann’s Theorem and degree–genus formula

Theorem (Riemann)

Let C be a smooth, irreducible projective curve of degree d.

There is a unique smallest integer g, depending only on C, such that

ℓ(D) ≥ degD + 1− g, (1)

for any divisor D ∈ Div C. Such g is called (algebraic) genus of C (or of its

function field).

Theorem
If C is a smooth projective plane curve of degree d, its algebraic genus is

g =
(d− 1)(d− 2)

2
. (2)
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Proof.

We show that g :=
(
d−1
2

)
satisfies ℓ(D) ≥ degD + 1− g for all D. Notice

If (1) holds for D it holds for any linearly equivalent D′ ∼ D;

If (1) holds for D it holds for any D′ ≤ D, in fact

ℓ(D′) ≤ ℓ(D)−deg(D−D′) ≤ degD+1−g−deg(D−D′) = degD′+1−g.

We can write a divisor on C as D = P1 + · · ·+ Pn − E, where E is an effective

divisor and Pi ∈ C. Choosing n lines li through Pi (not equal to C) we define

D′ := D + div
Zn

l1 · · · ln
∼ D

which satisfies

D′ = P1 + · · ·+ Pn − E + div Zn −
n∑

i=1

div li ≤ div Zn.
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A few remarks

If K = C the algebraic genus of a smooth projective plane curve coincides

with its topological one.

We can define the genus of a curve as the genus of the smooth projective

curve that is birational to it.

The genus of a curve is (tautologically) a birational invariant.

In case C is a projective plane curve of degree d with only ordinary

singularities, the "degree–genus formula" must be modified as

g =
(d− 1)(d− 2)

2
−

∑
P∈S

mP (mP − 1)

2
,

where S is the set of singular points and mP the multiplicity of C at P.
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Canonical Divisor

We have proved the following bounds for the dimension of an effective divisor

D ∈ Div C

degD + 1− g ≤ ℓ(D) ≤ degD + 1.

Notice that we can not expect a formula only depending on degD.

It turns out that the difference between ℓ(D) and degD + 1− g can be seen

as the dimension of another divisor D′ ∈ Div C related to D.
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Canonical Divisor

Definition

Let C be a projective curve of degree d. For any line l (not equal to C) we define

KC := (d− 3) div l ∈ Pic F

the canonical divisor (class) of C.

Notice that this definition does not depend on the chosen line since every two

lines are linearly equivalent.
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Lemma
For any projective curve C of genus g we have degKC = 2g − 2.

Proof.

degKC = (d− 3) = deg(div l) = (d− 3)d = 2

(
d− 1

2

)
− 2 = 2g − 2.
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Lemma

For any point P on a projective curve C we have ℓ(KC + P ) = ℓ(KC).

Remark
If K = C the latter is a direct consequence of the Residue Theorem for differential

forms. Indeed, a form ω can not have exactly one non–zero residue and so for any

φ ∈ K(C)

div (φω) + P ≥ 0 =⇒ div (φω) ≥ 0.

In other words L(div ω + P ) = L(div ω).
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Riemann–Roch theorem

Theorem (Riemann–Roch)

Let C be a smooth projective curve of genus g. Then

ℓ(D)− ℓ(KC −D) = degD + 1− g

for all divisors D on C.
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Proof.

We prove ℓ(D)− ℓ(KC −D) ≥ degD + 1− g descending induction, using

the fact that if degD > 2g − 2 the thesis follows by Riemann’s theorem.

Induction step: assume the statement holds for D and prove it for D − P for

any P ∈ C.

ℓ(D − P )− ℓ(KC −D + P ) ≥ ℓ(D)− 1− (ℓ(KC −D) + 1) ≥

≥ degD + 1− g − 2 = deg(D − P )− g.

If by contradiction the first inequality is not strict, we can find

φ ∈ L(D)− L(D − P ) and ψ ∈ L(KC −D + P )− L(KC −D).

But then we have the absurd:

div(φψ) +KC + P ≥ 0 with equality at P.
Nicola Dal Cin University of Udine
Algebraic Curves and Riemann–Roch Theorem 45 / 47



Algebraic Curves Topological genus Divisors Vector spaces L(D) Riemann–Roch theorem

Proof.

We prove ℓ(D)− ℓ(KC −D) ≥ degD + 1− g descending induction, using

the fact that if degD > 2g − 2 the thesis follows by Riemann’s theorem.

Induction step: assume the statement holds for D and prove it for D − P for

any P ∈ C.

ℓ(D − P )− ℓ(KC −D + P ) ≥ ℓ(D)− 1− (ℓ(KC −D) + 1) ≥

≥ degD + 1− g − 2 = deg(D − P )− g.

If by contradiction the first inequality is not strict, we can find

φ ∈ L(D)− L(D − P ) and ψ ∈ L(KC −D + P )− L(KC −D).

But then we have the absurd:

div(φψ) +KC + P ≥ 0 with equality at P.
Nicola Dal Cin University of Udine
Algebraic Curves and Riemann–Roch Theorem 45 / 47



Algebraic Curves Topological genus Divisors Vector spaces L(D) Riemann–Roch theorem

Proof.

We prove ℓ(D)− ℓ(KC −D) ≥ degD + 1− g descending induction, using

the fact that if degD > 2g − 2 the thesis follows by Riemann’s theorem.

Induction step: assume the statement holds for D and prove it for D − P for

any P ∈ C.

ℓ(D − P )− ℓ(KC −D + P ) ≥ ℓ(D)− 1− (ℓ(KC −D) + 1) ≥

≥ degD + 1− g − 2 = deg(D − P )− g.

If by contradiction the first inequality is not strict, we can find

φ ∈ L(D)− L(D − P ) and ψ ∈ L(KC −D + P )− L(KC −D).

But then we have the absurd:

div(φψ) +KC + P ≥ 0 with equality at P.
Nicola Dal Cin University of Udine
Algebraic Curves and Riemann–Roch Theorem 45 / 47



Algebraic Curves Topological genus Divisors Vector spaces L(D) Riemann–Roch theorem

Remarks

For the divisor D = 0 we have seen ℓ(0) = 1, and thus

1− ℓ(KC) = 0 + 1− g =⇒ g = ℓ(KC).

Sometimes the latter is taken as the definition of the genus.

If degD > 2g − 2, then deg(KC −D) < 0 and so ℓ(KC −D) = 0.

Therefore, in this case we have

ℓ(D) = degD + 1− g.

In other words, if the divisor is large enough we can compute its dimension

just in terms of its degree and the genus of the curve. [1] [2] [3] [4] [5]
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