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Abstract

We present the basic ideas and issues of the theory of Diophantine Geometry, with the main focus
on the one-dimensional case. The original problem is to determine whether (a system of) polynomial
equations, defined over a number field k, have infinitely many rational or integer solutions. Such a
problem reduces to study X (K), namely the set of K-rational points of an algebraic variety over
K D k; in particular, one is interested in finding geometric properties for X that ensures that X (K)
is not Zariski-dense. The aim of this work is to give a brief and intuitive overview of the above topics,
focusing on the case of curves for which Siegel’s and Faltings’ theorems provide a complete descrip-
tion. In particular, in order to study integral points, we will treat some fundamental preliminary
results about Diophantine approximation, namely the theory of approximating algebraic numbers by
rationals. For some proofs and further remarks and details, we will refer to the bibliography.

1 Introduction

The problem of finding integer solutions to polynomial equations, also known as solving Diophantine
equations, is among the most antique and fascinating in all mathematics. In fact, the world “Diophantine”
refers to the Hellenistic Diophantus of Alexandria (III century AD) and suggests how far the first studies
in the field date back.

Example 1.1. (Linear equations) The simpler example one can consider is probably finding the integer
solutions of the linear equation
axr + by = c,

where a, b, c are integers. Just a small amount of arithmetic is needed to conclude that the latter has
solutions in Z if and only if the d := ged(a,b) divides ¢, and given a particular solution (z,y) € Z? all
the infinite others are of the form (x + kv,y + ku), with k € Z and v = a/d, v = b/d.

Unluckily — or maybe luckily — it is not always that simple, one could expect that higher degree
polynomials provide an higher complexity and, besides there are better indicators for the latter and this is
not always the case, it is true that they may involve dealing with algebraic numbers, i.e. field extensions.

Example 1.2. (Pell’s equation) For instance, one of the most celebrated examples is Pell’s equation

22 —ny? =1, neZso.

The latter was already known in the IV century AD in India and Greece where it was much investigated
thanks to its connection with the square root of two [1]. Only in the XVIII century AD, Lagrange proved
that it has infinitely many solutions provided that n is not a perfect square, and in this case the latter
can be used to approzimate \/n with the rational fractions z/y. We highlight this fact since, as we
shall see later, the problem of approximating irrational numbers by rationals is a crucial technique even
in modern approaches. In this case, one can write the continued fraction expansion of y/n and check
the approximating coefficients p;/g; until finds the so called fundamental solution that generates all the
infinite others. Notice in fact that

a? —ny® = (z 4+ Vny)(z — Vny)



is the norm for the ring Z[,/n] and for the quadratic number field Q(y/n). Therefore (z,y) € Z? solves
Pell’s equation if and only if z + \/ny is an wunit in Z[\/n] with norm one. Thus, thanks to Dirichlet’s
unit theorem, it is possible to generate all the solutions from the fundamental one.

All this to point out that, in contrast with the simplicity of the formulation of such Diophantine
problems, the theoretical apparatus that it is employed for their study is far more advanced that what
ancient Greeks or eighteenth century people could have even imagined. It is impossible not to mention
at this point Fermat’s Last Theorem, namely the conjecture that no positive integers a, b, and c satisfy
the equation

an + b'I’L — C’ﬂ,

for n > 2. Despite the case n = 2 was known since Pitagora by centuries, and the conjecture was
formulated by Fermat in 1637, the proof of the above “simple” statement was only given in 1995 by A.
Wiles employing a fascinating connection between elliptic curves and modular forms [2].

Wiles’s theorem is not an isolated case, indeed, modern approaches of the so called “Diophantine
geometry” — term that was coined by S. Lang in [3] — involve the study of the underlying geometry of
the algebraic variety determined by the polynomial equation (or by the system of equations). In fact, as
it is well-understood in case of curves, the latter determines the qualitative arithmetic properties of the
variety.

Example 1.3. In the case of Pell’s equation, which in Cartesian coordinates represents an hyperbola, the
fact that there are infinite integer solutions is linked to the geometric property of having an automorphism

group
G::{<a nb> ‘a,bER, a2—n62:1}
b a

that sends the hyperbola into herself, in other words v € R? is a solution if and only if Tw is also a
solution, for all T' € G.

In fact, above behaviour is an instance of a general paradigma which holds for algebraic curves, which
can be naively expressed as

Hyperbolicity <= finite amount of integeral pointsﬂ

More precisely, recall that a smooth algebraic curve C is topologically characterized by two discrete
invariats: its genus g and the number d = #(C — C) of its points at infinity in a smooth completion C.
By mean of the above invariant it is defined the Euler characteristic of C' as

x=x(C):=29g—2+d,

and we say that a curve is hyperbolic if x > 0, parabolic if x = 0 and of elliptic type if x < 0. With this
notations, the main result concerning integral points for algebraic curves is due to Siegel (here stated in
general for a number field k and Og, a ring of S—integers, in place of Q and Z respectively).

Theorem 1.1. (Siegel 1929) Let C be an affine curve of Euler characteristic x, defined over a number
field k, and let Og C k be a ring of S—integers. If the hyperbolicity condition x > 0 holds, then the set
of integral points on the curve C(Qg) is finite.

Conversely, if a curve has genus zero and has at least a rational point and at most two points at
infinity is isomorphic either to the affine line or the multiplicative group — as we shall better see later.

Since, by Riemann-Roch theorem, smooth projective curves of genus zero over s are isomorphic to
plane conic over k, it follows that the previous ones have an infinite set of integral points (at least after
enlarging the ring of integers so to have infinitely many units).

From above results and consideration we can deduce Siegel’s theorem is an optimal result, and basi-
cally solves the problem of determine whether an affine curve has an infinite set of integral points. What
is still an open problem is the task of finding an algorithm to determine such a set, i.e. there is an effective
proof of Siegel’s result only in particular cases.

1In the sense of Definition



In this work we will briefly expose some basic results of Diophantine geometry, with focus on the
one dimensional case and in particular Siegel’s theorem. The main tools we deal with are the theory
of height functions — which are a better indicator of the complexity of an algebraic object rather than
the polynomial degree — and the Diophantine approximation, i.e. the theory of approximating algebraic
numbers by rationals or, more generally, of studying the convergence speed of a sequence of rational
points on a variety to some fixed subset.

2 Diophantine approximation

In this section we recall some classical results about Diophantine approximation, which as already said
addresses the problem of approximating an irrational number « by rationals. The notation we will adopt
is in part recalled in the appendix, more details and proofs can be found in [4].

2.1 Diophantine approximation on the line

Let us take o € R, as a consequence of the density of Q in R, it holds that

a—p’ZO,
q

inf
p/q€Q

in other words that it is possible to approximate o with arbitrarily high precision. The main concern is
to estimate the accuracy in the precision of the latter approximation with respect to the denominator ¢
— since one wishes to have good approximations with relatively small denominators.

More precisely we are interested in determining whether given a € R and an exponent e > 0 the
inequality
o — p’ <

1
q) = ¢’

q

(1)

can have infinitely many solutions in Q.

2.1.1 Basics results

We define the approzimation exponent for o € R to be the smallest number 7(«) such that the property
holds for every exponent e > 7(«). In 1842, Dirichlet proved that every real number has an approximation
exponent at least two; remarkably this is the best possible result for an arbitrary irrational number (i.e.
not necessarily algebraic).

Theorem 2.1. (Dirichlet 1842) Let @ € R — Q be a real irrational number, there are infinitely many
rational numbers p/q € Q satisfying
p

o— =
q

1
< 5

q

(2)

In this case, there is also an effective method to determine an approximating subsequence, namely
truncating the continued fraction expansion of «.

An upper bound to the approximation exponent of algebraic numbers was found by Liuville two years
later: if «v is a degree d algebraic number over Q then 7(a) < d.

Theorem 2.2. (Liouville 1844) Let o be an algebraic number of degree d over Q, there exists a positive
number c¢(«) such that for all p/q € Q it holds

iR 3)

Proof. Let f € Z[x] be a non—zero irreducible polynomial with root a, and f its formal derivative. Given
p/q, by the mean—value theorem exists £ € R between a and p/q such that f(a)—f(p/q) = f'(§)(a—p/q).

Since f is irreducible end of degree d, the rational number f(p/q) is non—zero and has a denominator
which is at worse ¢?. It follows that |f(p/q)| > 1/q¢ and

fef-fra- o) 5

q q




Now, notice that since f is irreducible, it has not a double root at o and so f/(«) # 0. Therefore provided
q is large enough, ¢ is close to o and also f’(£) # 0; in particular there is a certain positive integer g such
that

2 !/
’a—p’ ZM for all ¢ > q.
q q
Provided choosing a smaller constant ¢(«), in place of 2/|f’(«)| to make the latter hold for the finite
set of denominators 1 < ¢ < ¢, the assertion follows. O

Corollary 2.1. A sufficient condition for @ € R to be a transcendental number is to be “well approx-
imable by rational numbers”, in the sense that for all d > 1 and for every constant ¢ > 0 there is a
rational number p/q € Q such that

a—‘<. (4)

Example 2.1. The real number a = Y ., 27™ is transcendental. We can therefore write

1 1 2 2~ (N+2)
- ZW :Zﬁ<2w+1)!: q
n<N n>N
N——

p/q with q:=2N!

and notice that for each ¢ > 0 there is an N large enough to make hold for p/q := ZnSN 2-n

2.1.2 Roth’s theorem

A much stronger result — which is optimal considering Dirichlet theorem and is also more difficult to
prove — is the theorem due to Roth that guarantees that the approximation exponent for algebraic
numbers is 7(a) = 2.

Theorem 2.3. (Roth 1955) For all « algebraic numbers and every € > 0, the inequality

has only finitely many solutions p/q € Q.

Equivalently, there exists a constant c¢(a, &) > 0 such that for all rationals p/q

q2+a : (6)

However, beside being quite complex and articulated, the proof of the previous result is not effective, in
other words it does not provide any procedure either to determine the finite set of rationals that do not
satisfy (B)), or the function c(a, €).

As mentioned, Roth’s theorem is an optimal result in the case of approximation using rational num-
bers, because of theorem [2.1] Nonetheless, there are some extensions that use a different number field
k C C to approximate a@ — of course in this case there are Dirichlet analogue results that bound the
approximation exponent from below.

2.2 Roth’s theorem for algebraic curves

In general one might allow the approximating values to be in a number field x rather that Q, and may
even want to consider other absolute values rather than the only usual one. This can be done choosing
a set of places S containing the archimedean as recalled in the appendix. In this general case, Roth’s
theorem has the following formulation.



Theorem 2.4. (Roth’s theorem general version) Let x be a number field, S C M, a finite set of places
on k, that have been extended in some way to k. Given a € & and € > 0, there are only finitely many

B € k such that .
Hmin{”ﬁ—a”v,l} < W (7)

veS

Proof. See Theorem D.2.1 in [4]. O

An application of theorem as we will see in the next section, is to prove that the S—unit equation
U +V =1 has a finite number of unit solutions in OF. This result itself is useful to prove that in an
affine curve of genus 0 and with at least three points at infinity has a finite number of S—integral points
(theorem [3.1)).

However, in order to extend above mentioned theorem to curves of greater genus, it is needed another
version of Roth’s theorem for curves.

Proposition 2.1. If x is a number field, C/x a smooth projective curve of genus g defined over x and
f € k(C) a nonconstant function, let e be the maximum order of the zeros of f. Fixed a constant € > 0,
we choose a function t € k(C) that is well defined and unramified at all zeros and poles of f. Then there
is a positive constant ¢ := ¢(f,t,C,,5) > 0 such that

1 mind15 (P 1) > g rpymraree for il P € O ®)

where s = #5S.

Proof. For some effective divisor E > 0 we may write the divisor of f as

d“}(f) :el(Q1)+"'+6r(Qr) - E, (9)

with @;’s distinct zeros of f and e = max;—1, . ,{e;}. If the thesis was false, by contradiction there would
be a sequence of points {P; };en in C(k) such that

lim H, (t(P;)) ) > T min{[| £(P)]., 1} = 0. (10)

i—00
veS

Observing that [[, g min{||f(P)|lv,1} > (minyes{||f(F;)]»,1})?, and after substituting and taking the
s roots we have

limn H(¢(P3)) )¢ min{ [ £(P) o, 1} = 0. (11)

1—> 00

Recalling that the curve has only finitely many k-rational points of bounded height, we have that
H,(t(P;)) — oo. Thus we can choose a place w € S and a restrict ourselves to a subsequence of
{P;}ien (that we will still indices with ¢ by abuse of notation) such that

lim H(#(P) ") (P = 0. (12)

Since H,(t(P;)) diverges, it has to be || f(P;)|w — 0 and so P; approaches one of the zeros of f in the
w-adic topology. By restricting once again to a subsequence we may assume wlog that {P;} approaches
some fixed zero Q; of f, with j € {1,...,7}.

Since f vanishes to order e; at @);, the function

g:=(t=1UQ;))"“f

has no zero or pole at Q;. Therefore g is w—adically bounded in a neighborhood (in the w—adic topology)
of @;. In other words exist positive constants ci,cz > 0 such that definitely

an < [[((F) = 6(Q;) ™ f(Pi)|lw < co. (13)
Rearranging equations and it follows that

lim H (4(P)) 5 (1(P) = Q) | = 0.



Finally, recalling that e = max;—1 __,{e;}, we deduce

lim Hy (t(P) 9 [H(P) = #(Qy) | = 0.
and so that |[t(P;) — t(Q;)|lw — 0. In other words we have that the sequence {t(P;)} C & definitely
approximates t(Q);) € & violating Roth’s theorem hence the statement of the proposition follows by
contradiction. O

With a bit more effort and the assumption that C has positive genus, it is possible to show that the
exponent p(f) = s-e(f)(2+¢) in the above proposition can be replaced by any positive constant.

The idea is to find a covering ¢ : C’ — C such that exist rational points P’ € C’(x) lifting the rational
points P € C(k), so to have ||f(¢(P')|l. = ||f(P)]l,. What happens it that for a certain ¢’ € k(C’) we
have

H(t'(P')) ~ Hy(t(P))" d&2; (14)
so if we apply Proposition to C’, fo¢ and t' we find
gmin{||fo¢(Pl)||v,1} > Hﬁ(t,(P,))f_e(M) s forall P'e C'(x), (15)
and also because of
T[T win{)if(P)ll., 1} > Hﬁ(t(P))s_e(fw) Go7amy forall PeC(x), (16)

veS

in terms of C'. Now, by taking ¢ with a very large degree we can intuitively make the approximation
exponent arbitrarily small (the detailed proof, which make use of Weil’s height machine, can be found
below Theorem D.9.4 in [4]).

Theorem 2.5. (Roth’s theorem for curves) If x is a number field, C/x a smooth projective curve of
genus g defined over k and f € k(C) a nonconstant function, let e be the maximum order of the zeros of
f. If we choose a function ¢t € k(C) which is defined and unramified at all zeros and poles of f and take
p > 0. Then there is a positive constant ¢ := ¢(f,t,C, p,S) > 0 such that

[ min{l/P)llo, 1} >

s Ty oralPed) (17)

2.3 The S—unit equation

A remarkable application of Roth’s theorem is that the two—variable S—unit equation
U+V=1 UVecO] (18)

has only finitely many solutions. This fact is not very surprising if we notice that we are looking for
intersections between the finitely generated group OF x OF and the proper subvariety {U +V = 1} of
G X Gy,

Theorem 2.6. (Siegel, Malher) Let x/Q be a number field and let S be a finite set places on s which
includes the archimedean ones. Then the S—unit equation

U+Vv=1
has only finitely many solutions in S—units U,V € Og.

The idea of the proof is to use the fact U,V € OF and therefore exists an absolute value w € S for
which |U|,, and |V, are big. Thus, writing |[UV ! + 1], = [V} we find that —UV ~! approximates 1.
Using the fact that OF is finitely generated to write U and V by aX™ and bY™, and substituting gives

X\" (b 1
Y a aYm™

w w



We deduce that X/Y approximates %7/—b/a as close as —U/V approximates 1, while the height H,(X/Y) ~
H,.(U/V)Y™ and for large values of m, this fact violates Roth’s theorem.

There is also a stronger theorem by Evertse [5], which gives an upper bound for the number of solutions
of . Moreover, Evertse himself together with van der Poorten and Schlickewei proved the following
generalization to the n—variable S—unit equation, which has numerous applications [6].

Theorem 2.7. (Evertse, van der Poorten and Schlinckewei) Consider the n—variable S—unit equation
Ui+---+U, =1,

which defines an irreducible algebraic subvariety in GJ.,. Then there are only finitely many solutions
(Un,...,Up) € (OF)™ for which there are no sub-sums of the U; that vanish.

3 Integral and rational points on curves

In this section we present the main and classical results about integral and rational points on algebraic
curves. We will also present the sketch of a proof of Siegel’s theorem that applies Roth’s approximation
result 2:4] Our aim here is simply to give an idea of the main tools and arguments that can be employed
in this framework, for any further details the reader can refer to [4] or [7].

We also point out that the following is not the original proof by Siegel — since Roth’s theorem is
posterior to his result — which only considered the case of algebraic integers over k. In addition, another
proof using a new method based on the subspace theorem was given in 2002 by P. Corvaja and U. Zan-
nier [8].

Before going further we shall give a more detailed and general definition of what we consider an
integral point of an algebraic variety X defined over a number field x and the ring of S—integers Og C k
with respect to the finite set of places S containing the archimedean ones — as recalled in the appendix.

Definition 3.1. Let X be a quasi projective irreducibely variety, defined over a number field x, and
assumed embedded in a projective space Py (which is canonically provided with an integral model). We
denote by X a completion of X in a projective space Py, and therefore we can write X = X — D where
D is a proper closed subvariety of X. A point P € X (k) is S—integral with respect to D if P reduces to
a point of D for no place outside S.

Point out that if X is an affine variety embedded into the affine space A, the integral points with
respect to the divisor at infinity of X exactly correspond to what we would intuitively expect to be the
integral points, i.e. those whose coordinates are in Og (which indeed generalizes the ring of algebraic
integers of k). While, if X is projective D = () and so the set of S—integral points is the whole X (k).

Example 3.1. e Considering the affine embedded in the projective line A! < Py, gives
D=X-X=P —A"={(1:0)} = {c0}.

Letting x = Q one finds that the rational points, those corresponding to the projective points (a : b)
with a,b coprime integers, b # 0, are S—integral with respect to the point at infinity if and only if
all p—adic valuations associated to primes that divides b are in S. In particular, in case S does not
contain any p—adic valuation, (a : b) does not reduce to (1 :0) if and only if b = +1, i.e a/b € Z.

e Another one-dimensional example is the multiplicative group G,, defined by the hyperbola zy = 1
in the affine plane A%. In this case D = {0,000} and so (a : b) with ged(a,b) = 1 does not reduce to
either (0: 1) or (1:0) and so X(Z) = {(-1:—-1:1),(1:1:1)} or in general X(Og) = OF. So
if we enlarge the ring of integers to acquire infinitely many units the set of integral points is also
infinite.

3.1 Siegel’s theorem

Let now k be a number field, S a finite subset of places, containing the archimedean ones, and Og be the
relative ring of S—integers of k.



We study two different cases based on the genus of the curve C' in exam. The following result provides
conditions in which a function on P! can (or can not) assume infinitely many integral values.

Theorem 3.1. (Siegel, case g = 0) If k is a number field, C/k is a curve of genus zero, and ¢ € k(C)
a rational function on C with at least three distinct poles in C(k). Then, there are only finitely many
rational points T € C'(x) such that ¢(T) € Os.

Proof. Since in case C(k) = () the statement is trivial, we can take C' = P! and write

f(z,y)

0= g(z,y)

. f.g € Klz,y]

where f and g are homogeneus polynomials with the same degree and no roots in P!(%) in common.
Taking a finite extension K/k over which both f and g splits (with abuse of notation we still denote K
by k), and provided adding finitely many primes to S we can assume that

(i) f and g factor completely in k
f=a(@—ay)® (& —any)™, g=blx—Liy)" - (r— Fay)™, (19)

where a,b € OF and oq,...,Qm,B1,..., B, € Os. Moreover, notice that that if ¢ has a zero or a
pole at (1 :0) then respectively f or respectively g may also have a factor of the form y.

(ii) The differences a; — 8; € OF forall1 <i<mand1<j <n.
(iii) The ring Og is a principal ideal domain.

Consider now a point T € P!(x) for which the thesis holds, i.e. ¢(T) € Og. Thank to point (iii)
above, we can assume it has coprime coordinates that we indicate T'= (X : V) with ged(X,Y) = 1. For
all 1 <i¢<m and 1 <j <n we have the easy reformulations

(X — V) = (X = 3;Y) = (ai = B;)Y (20)

and
—,Bj(X — O[iY) + O{i(X — 5]Y) = (Oéi — ﬁJ)X (21)

Since the differences a; — §; are units and ged(X,Y) = 1, we have that X —a;Y and X — ;Y are coprime
for any ¢ and j. By it follows that also f(X,Y") and g(X,Y’) are coprime in Og.

Since ¢(T) € Og by assumption, ¢(X,Y) divides f(X,Y) and therefore ¢(X,Y) is a unit, and in
particular all the terms X — 3;Y € O for 1 < j < n. By hypothesis ¢ has at least three poles, i.e.
n > 3, and we can consider Siegel’s identity

Pa—PBs X—-BY Pz—0 X—PBY _
Po—=P1 X —=0Y [a—p1 X —pB3Y
which, by theorem can assume only finitely many values (notice that both terms on the left-hand side

are units). Finally we conclude showing that to each fixed value v := (X — 1Y) /(X — 53Y") corresponds
one single point of coordinates

1, (22)

T'=(X:Y)=B1—v8:1-1).
O

The same result of the latter is true for curves of genus g > 1, however the proof in this case the proof
requires a reformulation of Roth’s theorem for curves.

Theorem 3.2. (Siegel, case g > 1) Let x be a number field, and C/k a smooth projective curve of genus
g > 1 over k. Then, for every nonconstant function f € x(C), the set

{PeC(x)[f(P) € Os} (23)

is finite.



Proof. In order to apply theorem by contradiction assume that the set
{PeC(r)|f(P)eOs} (24)

is infinite. Let us fix a function ¢ € x(C) that is defined and unramified at all zeros and poles of f, and
fix p = deg f/(2degt). First, apply Theorem to the function 1/f which gives a constant ¢; > 0 such
that

H min{|[(1/f)(P)|v, 1} > ﬁlp))p for all P € C(k), (25)
veES fe

which rearranged gives
H,(t(P)) > H max{||f(P)|l,,1} for all P € C(k). (26)

veS

Now, if f(P) is an S—integral point then by definition || f(P)||, for all v ¢ S, so its height is

He(f(P) = [] max{llf(P)lo,1} = ][] max{llf(P)]., 1} (27)

veEM,, ves

By and we finally have
H,(t(P))? > ciHy(f(P)) for all P € C(k) with f(P) € Og. (28)
We obtain an estimation of logarithmic heights taking logarithms and dividing by [« : Q] both sides:
ph(t(P)) > h(f(P)) — ¢y for all P € C(k) with f(P) € Os. (29)
Dividing by h(t(P)), rearranging and using Proposition gives for all P € C(x) with f(P) € Og

deg f < h(f(P)) Cy R(t(P))—oco deg f

2degt — h(t(P)) h((P)) degt’

Since the above limit is well defined (provided we restrict to the infinite subset ), we reach the absurd

deg f S deg f
2degt = degt’

O

Remark 3.1. The proof of Siegel’s theorem we presented is ineffective, actually there are not effective
results in the general case, but for many examples Baker’s theorem can be used to find a lower bound
for linear forms of logarithms and so provides a method to refine above proof and make it effective [9].

Notice that combining theorems 3.1 and [3.2] one gets that: an affine irreducible curve C' C A™ defined
over k contains (in a suitable integral model) infinitely many points with coordinates in Og if C' is a
rational curve and has at most two points at infinity, namely Theorem

Indeed, let C' be an affine curve of genus g and d points at infinity, in other words denoting C' a
completion of X in Py, we have d = #(C — C). Then the above theorems give

Hyperbolicity condition

x(C)=29g—-24+d>0 = C(C(Og) is finite. (30)

Vice—versa if a curve is rational (i.e. of genus zero with at least one rational point) and has exactly one
point at infinity it is isomorphic (modulo normalization) to the affine line. On the other hand, if the
points at infinity are two, we can normalize it (after possibly taken a quadratic field extension) obtaining
a variety isomorphic to the multiplicative group G,, = A' — {0}, which has infinitely many integral points
too — at least after enlarging the ring of integers to include infinitely many primes.



Remark 3.2. e Above conclusion is remarkable, indeed, from a topological property we deduce
an arithmetic one. Moreover, by the above considerations we can conclude that Siegel’s theorem
is the best—possible result concerning integral points on curves. It has to be also noticed that for
curves of genus g > 2 Siegel’s result is implied by Faltings’ theorem, which ensure that the set C(k)
of rational points itself is finite.

e Since a curve of genus 1 is an abelian variety of dimension 1, Siegel’s theorem states that an affine
piece of an abelian variety of dimension 1 has only a finite set of S—integral points. Faltings, using
an extension of Vojta’s method, proved that this is the case for all abelian varieties of arbitrary
dimension [10].

3.2 Hints on Faltings’ theorem and generalizations

In this final part, starting by the one-dimensional case, we draw some general considerations about
density of integral points in a variety. As anticipated before, the main result concerning s—rational points
on an algebraic curve is due to Faltings, who proved a conjecture formulated by Mordell more that 60
years earlier.

Theorem 3.3. (Faltings 1983) Let C be an irreducible algebraic curve defined over a number field . If
the genus of C is not less than 2, we have that C(k), its set of k—rational points, is finite.

As an easy and curious application of this result, we have a weak version of Fermat Last Theorem.
By Riemann-Roch theorem descends the formula g = %(n —1)(n — 2) to compute the arithmetic genuaﬂ
of an irreducible plane curve of degree n. Then if n > 4, the Fermat curve z" 4+ ¢ = 1 has genus > 3
and so xy > 0. Now using Faltings’ result we have that a™ 4+ b"™ = ¢™ has at most finitely many primitive
integer solutions (i.e. pairwise coprime solutions) if n > 4.

Combining Theorem [3.3] with Siegel’s result one obtains:

Theorem 3.4. (Siegel-Faltings) Let C' = C' — D be an irreducible (affine or projective) curve over a
number field s, where D C C(R) is the set of its point at infinity in a smooth completion C. If C'(Og)
the set of points with coordinates in Og C & is infinite, then x(C) < 0.

This result is optimal since it holds its converse:

Theorem 3.5. If C'/k is an (affine or projective) curve with x(C) < 0. Than there exists a finite field
extension £'/k and a ring of S—integers Og C k' such that C(Og) is infinite.

Since the problem of determining geometric conditions that ensure that the set of points with S—integer
coordinates is basically solved in the one dimensional case, it is natural to study suitable generalizations
of Theorem in higher dimensions. In general we are interested in the problem of

determining geometric conditions (analogue to hyperbolicity) that ensure that, in an algebraic variety
V/k, the set of K—rational points of V' is not Zariski—dense for every number field extension K D k.

As expectable, one is led to deal with higher dimensional Diophantine approximation, i.e. with the
aim of approximating hyperplanes defined by linear forms with algebraic coefficients by rational points.
For instance, the two—dimensional case some results where achieved, using the subspace theorem, in [11].

A good overview of the state of the art, together with some remarks around conjectures in the general
case such as the famed Vojta’s and Campana’s, can be found in [12].

2Which coincides with the geometric genus if the curve is non—singular.
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A Absolute values and heights

In this appendix we recall some results about absolute values and height functions with the only aim of
fix some notations. For further details and proofs we refer to [4] or [7].

A.1 Absolute values
Let s be a number field.

Definition A.1. An absolute value on k is a real-valued function |- |, : K — [0,00) such that for all
z,y € K hold

(1) |z|y = 0 if and only if x = 0, i.e. it is nondegenerate.
(2) |zyly = ||y - |y|o, i-e. it is multiplicative.
(3) |z +ylo < ||y + |y|v, i-e. satisfies the triangle inequality.
Moreover, if in place of (3) it full-fills the following stronger condition said ultrametric inequality:
(3) |z +ylo < max{|z[y, [yl }-

the absolute value is said to be nonarchimedean.

Example A.1. e For every k there is the trivial valuation, i.e. the one which is constantly 1 but for
x = 0, and is clearly nonarchimedean.

e Over Q we can consider the restriction of the absolute value over R, namely
|z| = max{x, —x},
which is an archimedean absolute value on Q.

e For every prime number p is defined a nonarchimedean p-adic absolute value over Q. We denote
ordp(z) the unique integer such that x € Q — {0} can be written

z=p7 (@) . % with a,b € Z and p fab,

while ord,(0) = oo by convention; the homomorphism ord, : Q* — (0, c0) is called p-adic valuation
on Q. Finally, the p—adic absolute value of x € Q is defined as

—ordp(x).

|z[p == p

An absolute value defines a metric, throughout d,(x,y) := |z — y|,, and therefore a topology on k.
Two absolute values which induce the same topology are said dependent, independent otherwise. It is
easy to show that “dependence” is an equivalence relation, and the corresponding equivalence classes of
absolute values are called places.

Proposition A.1. Let ||, and | - |, be non—trivial absolute values on a field .
(i) They are dependent if and only if |z|, < 1 implies |z|, < 1.
(ii) If they are dependent, then there exists a number § > 0 such that |z|, = |z|] for all x € .
Proof. Lang, Proposition 1.1, cap. XIIL. O

Recall that a result by Ostrowski [13] states that every non—trivial absolute value over Q is either
equivalent to the usual absolute value | - | or some p-adic absolute value | - |,.

The set of standard absolute values on @Q, i.e. |-| and the p-adic ones, is often denoted as Mg. More
generally M,, the set of standard absolute values on x, consists in those whose restriction to Q is in M.

Definition A.2. Let x'/k be an extension of number fields and v € M, w € M, two absolute values.
We say that w divides v (or w lies over v) if the restriction of w to  is v, if this is the case we write
wlv. The absolute value v is said p—adic if it lies over | - |, the p—adic absolute value on Q.

11



From the fact that Z is an unique factorization ring, follows the product formula for the absolute
values over the rational numbers:

H |z|y =1 forallz € Q, x #0. (31)

vE Mg

By point (ii) of Proposition to every place of k correspond absolute values that differ logarith-
mically by a positive constant. It is now natural to choose a “canonical normalization” which allows to

generalize .

Definition A.3. Let v € M,, the local degree of v is n, := [ky : Q,], where &, and Q, denote the
completion of x and Q with respect to v (or the restriction of v in the latter case). We define the
normalized absolute value associated to the absolute value, or better the place, v as

||, = |z|5e, for all z € k.

The previous normalization simplifies the notation in the results of Diophantine approximation, such
as Roth’s theorem, and in the product formula:

Proposition A.2. (Product formula) Let x € k — {0}, then [[ ¢,/ [[zll, = 1.

We conclude this section recalling that is possible to characterize the ring of integers of x by
O, ={x €k : |z|, <1 for all v non archimedean absolute value on x }.

This suggests the definition, for each subset S of places of xk containing the archimedean ones, of the ring
of S—integers of Kk
Os={xekr : |z, <1 foralv¢gsS}

Its group of units is
Of ={z ek : |z|y=1 forallv &g S}

and it is called group of S—units.

A.2 Height functions

Height functions are an useful tool that aims to quantifies the complexity of algebraic objects. Intuitively,
a naive way to determine the size of a rational number p/q could be to take the maximum between the
moduli of respectively the numerator and the denominator.

In general it is possible to define the height with respect to an absolute value | - |, € M,, and defined
for the rational points on an algebraic variety V/k.

A.2.1 Heights on Projecive Space

A point P € P"(Q) can be written in the (almost unique) form

P=(xp:21: - :m,) withzg,...,z, € Z and ged(xo,...,2,) = 1.
For a given absolute value | - | the height of P is defined to be the quantity H(P) = max{|xol,...,|za|}
Definition A.4. Let P = (zg : -+ : x,,) € P"(k) be a point with homogeneous coordinates in the number

field x. The height of P relative to k is defined as

H.(P) = H max{||zollv, ..., [|zn v}

vEM,

It is also useful to define the so called logarithmic height h,(P) := log H.(P).
The height of an element « € & is defined as the height of the associated projective point (o : 1) €
P! (k), so that

Hy(a) = ] max{|al,,1}.

vEM,
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Using the product formula it is possible to show that H,(P) is well-posed and independent on the
choice of homogeneous coordinates for P. It is also clear that by choosing coordinates such that x; = 1
for some ¢ we have H,,(P) > 1 for every P.

Lemma A.1. If P € P"(k) and let ' be a finite extension of k. Then
H,/(P) = H,(P)"".
Proof. Recalling that n,, = [ : Q] = [k}, : Ky|ny we have

Ho(P)= [] wmax{leoll,-.llzally = T[] T max{loll,- . llzall}

weM, 1 vEM,; weM, s, wlv

=11 [T mex{laolpe,... lzali} = ] I max{lizollu, ... [lwall, e ]
vEM, weM, s, wlv vEM, weEM,/, w|v

= I max{liwollos-- -, llzall } = Ho (),
vEM,

where in the end we used the degree formula

Z [k, t ko] = [k @ K]

weM, s, wlv
O

The previous lemma suggest the definition of an height function which is independent on the under-

lying field. We call absolute height on P* the map H : P*(Q) — [1,00) defined as H(P) = H,(P)"/l=d
with £ any number field with P € P™(k). Similarly the absolute logarithmic height on P™ is defined posing
B(P) = hy(P)/[x : Q).

We conclude this part stating the following finiteness result, which is of most importance for the
application in Diophantine geometry.

Theorem A.1. (Northcott) For any pair of numbers ¢ > 0, d > 1 the set

{PeP"(Q)|H(P)<cand [Q(P): Q] <d}

is finite; where Q(P) denotes the field extension Q(xo/x;, x1/%j, ..., %, /x;) with the 2’s the coordinates
of P and x; # 0. In particular for any number field x the set

{P € P () |HA(P) < ¢}

is finite.

A.2.2 Heights on Varieties

We recall now how to extend the definition of height functions to points of an algebraic variety V' defined
over Q.

Definition A.5. Let ¢ : V — P" be a morphism. The absolute logarithmic height on V relative to ¢ is
the map

he : V(Q) = [0,00),  he(P) = h(6(P)),

where h : P(Q) — [0,00) is the height function defined previously. Notice that the definition applies in
case V is embedded in P".

We state now Weil’s construction that associate an height function to every divisor of a smooth
projective variety V/x.

Theorem A.2. (Weil’s Height Machine) For every smooth projective variety V' over the number field s
there exists a map
hy : Div(V) — {functions V(%) — R}

with the following properties:
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(1) (Normalization) Let H C P™ be a hyperplane, then
hpn g (P) = h(P)+ O(1), for all P € P"(R).
(2) (Functoriality) Let ¢ : V. — W and D € Div(W), then
hy.¢«p(py = hw,p(¢(P)) + O(1) for all P € V(R).
(3) (Additivity) Let D, E € Div(V), then
hv.p+e(P) = hv,p(P) + hy,p(P) + O(1), for all P € V(R).
(4) (Linear Equivalence) If D, E € Div(V) are linearly equivalent then

hVVD(P):hME(P)‘FO(l), for allPEV(R).

(5) (Positivity) If D € Div(V) is an effective divisor and B the base locus of the linear system |D|,
then

hv.p(P) > O(1), forall P e (V — B)(R).
(6) (Algebraic Equivalence) Let D, E € Div(V) with D ample and E algebraically equivalent to 0.

Then
hv.g(P)

lim = 0.
PeV (k) hy,p(P)—oc0 hV’D(P)

(7) (Finiteness) Let D € Div(V) be an ample divisor of V. For every finite field extension x’/x and
every constant ¢ the set {P € V(') | hy,p(P) < ¢} is finite.

(8) (Uniqueness) The height functions hy,p are determined, up to O(1), by normalization (1), functo-
riality (2) just for embeddings ¢ : V < P", and additivity (3).

This correspondence is valid in general, but for our purposes it will be sufficient to consider the case
of algebraic curves (which is also easier to prove and deal with). For simplicity, we reformulate here point
(6) which will be useful in the proof of Siegel’s theorem.

Proposition A.3. Let C/k be a smooth projective curveﬂ
(i) Let D, E € Div(C) be divisors with deg(D) > 1, then for P € C(R)

lim hg(P) degE
hp(P)—oo hp(P) — deg D’

(ii) Let f,g € k(C) be rational functions of C' with f nonconstant. Then for P € C(7)

i e(P)) _ degyg
h(f(P))—oo R(f(P)) degf’

3For notation convenience we drop the first subscript since the reference to the curve is clear by context.
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