Seminario di Teoria Qualitativa dei Sistemi Dinamici

Presentata da Nicola Dal Cin

Università degli Studi di Udine

24 maggio 2021

Introduzione

Problema

•0000

Si consideri un sistema dinamico non lineare

$$\dot{x} = F(x),\tag{1}$$

dove $x = (x_1, \dots, x_N)^T \in \mathbb{R}^N$ e $F : \mathbb{R}^N \to \mathbb{R}^N$ continua con F(0) = 0.

Si trovino delle condizioni sufficienti affinché l'equilibrio x=0 sia **globalmente** asintoticamente stabile (GAS).

Definizione

Sia M un compatto in \mathbb{R}^N

lacksquare L'insieme M si dice **stabile** sse per ogni intorno U di M esiste V, un altro intorno di M, tale che

$$M \subseteq V \subseteq U$$
 e $\gamma^+(x) \subseteq U, \ \forall x \in V.$ (2)

■ La soluzione x=0 del sistema (1) si dice **globalmente asintoticamente** stabile (GAS) se è stabile (localmente) e **globalmente attrattiva**, ovvero ogni soluzione $\phi(t;t_0,x^0)$ tende all'origine per ogni $x^0 \in \mathbb{R}^N$.

Nicola Dal Cin Condizioni di GAS per alcuni di sistemi di eguazioni differenziali

Criterio per la LAS

Reti Neurali

Nel caso l'attrattività venga ricercata solo localmente, i.e. in un intorno di x=0, e quindi consideri soltanto il comportamento di una parte delle traiettorie, è più semplice dare una risposta al problema.

Teorema

Consideriamo il sistema (1), supponiamo $F \in C^1$ e denotiamo con J(x) la sua funzione jacobiana. Allora l'equilibrio x=0 è **localmente asintoticamente stabile** (LAS) se tutti gli autovalori di J(0) hanno parte reale negativa.

Non esistono tuttavia criteri altrettanto immediati per dimostrare la GAS di una soluzione.

I risultati che forniscono condizioni sufficienti alla GAS sono basati su ipotesi più forti. vediamone alcuni:

Teorema (Hartman)

Nelle ipotesi precedenti, l'equilibro x=0 è GAS se $[J(x)]^S:=\frac{1}{2}(J^T(x)+J(x))$ ha tutti gli autovalori negativi, per ogni $x \in \mathbb{R}^N$.

<u>Teorema (Hartman e Olech)</u>

Supponiamo esistano C e c costanti positive tali che $|x||F(x)| \geq c$ per ogni $|x| \geq C$. Sia $\beta(x) := \max\{\lambda_i(x) + \lambda_j(x)\}$ per $\leq i < j \leq N$ dove $\lambda_{i,j}(x)$ sono autovalori distinti di $[J(x)]^S$. Se x=0 è LAS e $\beta(x)\leq 0$ per ogni $x\in\mathbb{R}^N$ allora l'origine è anche un punto di equilibrio GAS.

Un esempio

I risultati precedenti, tuttavia, sono molto restrittivi ed esistono esempi di equilibri GAS ai quali non si applicano. Vediamone uno tratto da un modello di rete neurale:

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{pmatrix} = - \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} + \begin{pmatrix} -1 & -1 & 2 \\ 3 & -4 & 0 \\ -2 & 0 & -1 \end{pmatrix} \begin{pmatrix} 5 \arctan x_1 \\ \arctan x_2 \\ \arctan x_3 \end{pmatrix}$$
(3)

Partiamo da alcune considerazioni:

- Ci sono alcune mansioni (e.g. riconoscere pattern, recepire e rispondere a stimoli esterni) in cui la mente umana surclassa un semplice computer, sebbene questo possa trasmettere informazioni molto più velocemente.
- Il nostro cervello possiede inoltre altri fondamentali vantaggi, tra cui un'altissima efficienza energetica e un'elevata plasticità, ossia l'abilità di sviluppo in adattamento agli stimoli esterni. Ciò è realizzato mediante la creazione di nuove sinapsi e la modificazione di quelle esistenti.
- La principale caratteristica della mente è forse proprio quella di poter apprendere ed allenare la propria capacità di risposta agli stimoli.

Cos'è una rete neurale

Partiamo da alcune considerazioni:

- Ci sono alcune mansioni (e.g. riconoscere pattern, recepire e rispondere a stimoli esterni) in cui la mente umana surclassa un semplice computer, sebbene questo possa trasmettere informazioni molto più velocemente.
- Il nostro cervello possiede inoltre altri fondamentali vantaggi, tra cui un'altissima efficienza energetica e un'elevata plasticità, ossia l'abilità di sviluppo in adattamento agli stimoli esterni. Ciò è realizzato mediante la creazione di nuove sinapsi e la modificazione di quelle esistenti.
- La principale caratteristica della mente è forse proprio quella di pote apprendere ed allenare la propria capacità di risposta agli stimoli.

Cos'è una rete neurale

Partiamo da alcune considerazioni:

- Ci sono alcune mansioni (e.g. riconoscere pattern, recepire e rispondere a stimoli esterni) in cui la mente umana surclassa un semplice computer, sebbene questo possa trasmettere informazioni molto più velocemente.
- Il nostro cervello possiede inoltre altri fondamentali vantaggi, tra cui un'altissima efficienza energetica e un'elevata plasticità, ossia l'abilità di sviluppo in adattamento agli stimoli esterni. Ciò è realizzato mediante la creazione di nuove sinapsi e la modificazione di quelle esistenti.
- La principale caratteristica della mente è forse proprio quella di poter apprendere ed allenare la propria capacità di risposta agli stimoli.

Si è quindi cercato di riprodurre un modello artificiale che riproduca il funzionamento, rispetto ad alcuni compiti specifici, del cervello umano. Per fare ciò è necessario poter replicare

- a la struttura della rete: le unità di base, i neuroni, e quelle funzionali, le sinapsi;
- b il **processo di apprendimento**, finalizzato a modificare la struttura sinaptica;
- c la natura non-lineare del sistema e delle sue unità.

Vediamo come si può procedere.

Nicola Dal Cin

Modello di un neurone

Un **neurone** è l'unità di base per l'elaborazione dell'informazione, costituente una rete neurale (artificiale).

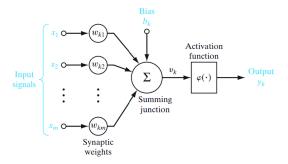


Figura: Modello nonlineare di un neurone

costituito da tre unità fondamentali:

Introduzione al problema

- un insieme di m sinapsi, ognuna avente un peso w_{ik} con $j=1,\ldots,m$;
- un "nucleo" che combina linearmente un **bias** b_k (di controllo esterno) con i segnali x_j in input alla sinapsi j pesati in modo opportuno;
- una funzione di attivazione che limita l'intensità dell'output del neurone.

Possiamo quindi riassumere il modello col sistema:

$$v_k = \sum_{j=0}^{m} w_{kj} x_j, \qquad y_k = \psi(v_k),$$
 (4)

dove abbiamo posto $x_0 := 1$ e $w_{k0} := b_k$.

- Il modello sopra proposto è statico e perciò privo della **plasticità** che caratterizza il cervello umano. Questo poiché dobbiamo ancora considerare un aspetto fondamentale: il **tempo**. Un modo per farlo è quello di introdurre un **feedback**, operazione che tuttavia può compromettere la "stabilità di un sistema neurale".
- Quello che faremo d'ora in poi, sarà infatti considerare un sistema neurodinamico, trattando quindi una rete neurale - mediante un opportuno modello - come un sistema dinamico.
- Considereremo il caso di un sistema a variabili di stato continue, con relative equazioni del moto descritte da equazioni differenziali e privo di rumore.

- Il modello sopra proposto è statico e perciò privo della plasticità che caratterizza il cervello umano. Questo poiché dobbiamo ancora considerare un aspetto fondamentale: il tempo. Un modo per farlo è quello di introdurre un feedback, operazione che tuttavia può compromettere la "stabilità di un sistema neurale".
- Quello che faremo d'ora in poi, sarà infatti considerare un sistema neurodinamico, trattando quindi una rete neurale - mediante un opportuno modello - come un sistema dinamico.
- Considereremo il caso di un sistema a variabili di stato continue, con relative equazioni del moto descritte da equazioni differenziali e privo di rumore.

Neurodinamica

- Il modello sopra proposto è statico e perciò privo della plasticità che caratterizza il cervello umano. Questo poiché dobbiamo ancora considerare un aspetto fondamentale: il tempo. Un modo per farlo è quello di introdurre un feedback, operazione che tuttavia può compromettere la "stabilità di un sistema neurale".
- Quello che faremo d'ora in poi, sarà infatti considerare un sistema neurodinamico, trattando quindi una rete neurale - mediante un opportuno modello - come un sistema dinamico.
- Considereremo il caso di un sistema a variabili di stato continue, con relative equazioni del moto descritte da equazioni differenziali e privo di rumore.

Modello Additivo

Uno dei modelli più adoperati in questo contesto è quello **additivo**. Per i nostri scopi è possibile (e sufficiente) introdurlo in analogia a un circuito elettrico:

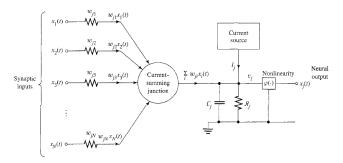


Figura: Modello additivo di un neurone j con N sinapsi.

Nicola Dal Cin Condizioni di GAS per alcuni di sistemi di equazioni differenziali

La corrente che fluisce verso il nodo della funzione di attivazione, quindi attraverso il circuito RC, è data dalla somma di quelle in ingresso e di una esterna (che funge da bias):

$$\sum_{i=1}^{N} w_{ji} x_i(t) + I_j. {(5)}$$

Se denotiamo con $v_j(t)$ il potenziale in input alla funzione di attivazione, la corrente in uscita dal circuito RC è:

$$\frac{v_j(t)}{R_j} + C_j \frac{dv_j(t)}{dt}. (6)$$

$$C_{j}\frac{dv_{j}(t)}{dt} + \frac{v_{j}(t)}{R_{j}} = \sum_{i=1}^{N} w_{ji}x_{i}(t) + I_{j}.$$
 (7)

Il termine capacitivo $C_j dv_j/dt$ è uno dei modi più semplici per rendere dinamico (con memoria) il modello di un neurone. L'output del j-esimo neurone è quindi

$$x_j(t) = \psi(v_j(t)). \tag{8}$$

Consideriamo infine una **rete ricorsiva** costituita da N neuroni di questo tipo. Ignorando i tempi di propagazione interneuronali, possiamo definire la dinamica della rete con il seguente sistema di equazioni differenziali del prim'ordine accoppiate:

$$C_j \frac{dv_j(t)}{dt} = -\frac{v_j(t)}{R_j} + \sum_{i=1}^N w_{ji} x_i(t) + I_j, \quad j = 1, \dots, N$$
 (9)

con

Introduzione al problema

$$x_j(t) = \psi(v_j(t)). \tag{10}$$

 Una condizione necessaria per l'applicabilità di alcuni importanti algoritmi di apprendimento a questa rete ricorsiva, è l'esistenza di attrattori.

Richiamo alla Teoria di Lyapunov-LaSalle

- Vedremo ora come è possibile utilizzare la teoria di stabilità di Lyapunov, per ricavare dei risultati più generali per determinare la GAS di una soluzione, specialmente nelle applicazioni alle reti neurali.
- Ricordiamo quindi qualche definizione e risultato che ci sarà utile.

Consideriamo nuovamente il sistema autonomo

$$\dot{x} = F(x),\tag{11}$$

dove $F:\mathbb{R}^n o \mathbb{R}^n$ è una funzione continua, F(0)=0 e supponiamo ci sia esistenza, unicità e dipendenza continua dai dati iniziali per ogni soluzione di (11).

Definizione

Sia $V:\Omega\subseteq\mathbb{R}^n\to\mathbb{R}$ una funzione definita su un aperto Ω e continua in $\overline{\Omega}$. Allora V si dice **funzione di Lyapunov** su Ω sse $\dot{V}(x)=\nabla(x)\cdot F(x)\leq 0$, per ogni $x\in\Omega$.

Sia $V:\Omega\subseteq\mathbb{R}^n\to\mathbb{R}$, con Ω aperto.

- La funzione V è definita positiva in Ω se $0 \in \Omega$, V(0) = 0 e V(x) > 0 per ogni $x \in \Omega \setminus \{0\}$
- V si dice illimitata radialmente se $\lim_{|x|\to\infty}V(x)=+\infty$.

Sia adesso $E:=\{x\in\Omega:\dot{V}(x)=0\}$, denoteremo con M l'insieme invariante, contenuto in E, massimale rispetto all'inclusione.

Teorema (di Lyapunov per la stabilità asintotica)

Sia V una funzione definita positiva, di Lyapunov in \mathbb{R}^n (i.e. $\dot{V}(x) \leq 0$ per ogni x) e illimitata radialmente. Allora ogni soluzione di (11) è limitata per grandi t e per $t \to \infty$ tende a M (definito come sopra).

In particolare, se $M = \{0\}$, allora l'equilibrio x = 0 della (11) è GAS.

Introduzione al problema

sistemi dinamici che emergono da problemi di controllo e nell'implementazione di reti neurali.

Consideriamo il seguente sistema di equazioni non lineare del prim'ordine

$$\dot{x} = -\mathscr{D}(x) + \mathscr{T}(x)h(x),\tag{12}$$

dove
$$x=(x_1,\ldots,x_n)^T\in\mathbb{R}^n$$
, $\mathscr{D}(x)=(\mathscr{D}_1(x_1),\ldots,\mathscr{D}_n(x_n))^T$ e $h(x)=(h_1(x_1),\ldots,h_n(x_n))^T$ sono applicazioni continue soddisfacenti $\mathscr{D}(0)=0$, $h(0)=0$ e $\mathscr{T}(x)=\{\mathscr{T}_{ij}\}$ è una matrice continua $n\times n$.

Assumiamo infine che siano garantite esistenza, unicità, dipendenza continua dai dati iniziale di ogni soluzione e che queste siano definite per tempi t arbitrariamente grandi. Nei diversi casi, faremo uso anche delle seguenti ipotesi aggiuntive su \mathcal{D} e h:

- (D) $x_i \mathcal{D}_i(x_i) \geq 0$ per ogni $x_i \in \mathbb{R}$, con $i = 1, \ldots, n$.
- (D1) $x_i \mathcal{D}_i(x_i) > 0$ per $x_i \neq 0$ con $i = 1, \ldots, n$.
 - Assumiamo che h soddisfi

Introduzione al problema

- (i) $x_i h_i(x_i) > 0$ per $x_i \neq 0$ con i = 1, ..., n.
- (ii) $\lim_{|x|\to\infty} \int_0^{x_i} h_i(\rho) d\rho = +\infty$ con $i=1,\ldots,n$.

$$V(x) = \sum_{i=1}^{n} \alpha_i \int_0^{x_i} h_i(\rho) d\rho, \tag{13}$$

dove le α_i sono costanti positive.

Siano h e \mathscr{D} funzioni soddisfacenti rispettivamente le condizioni (H) e (D). Supponiamo che per l'applicazione \mathscr{T} esista un'altra matrice diagonale $\alpha = diag(\alpha_1, \ldots, \alpha_n)$ con $\alpha_i > 0$ tale che

$$[\alpha \mathcal{T}(x)]^S = \frac{1}{2} \Big(\alpha \mathcal{T}(x) + \mathcal{T}^T(x) \alpha \Big)$$
 (14)

sia semidefinita negativa per ogni $x \in \mathbb{R}^n$.

Allora $\dot{V} \leq 0$ e ogni soluzione di (12) è globalmente definita in futuro e limitata. Inoltre, se $M=\{0\}$ allora l'equilibrio x=0 è GAS.

Applicazioni

Risultati Dinamici

000000

Teorema

Introduzione al problema

Sia h una funzione che soddisfa l'ipotesi (H). Se inoltre vale una delle seguenti:

- (i) \mathscr{D} soddisfa (D1) e $[\alpha \mathscr{T}]^S$ è semidefinita negativa per ogni $x \in \mathbb{R}^n$,
- (ii) \mathscr{D} soddisfa (D) e $[\alpha \mathscr{T}]^S$ è definita negativa per ogni $x \neq 0$.

allora ogni soluzione di (12) è globalmente definita in futuro e limitata. Inoltre l'equilibrio x = 0 è GAS.

Uno tra i modelli di reti neurali più utilizzato ed indagato è il **modello additivo**, descritto da

$$\dot{x} = -Dx + Tg(x) + I, (15)$$

dove $D=diag(d_1,\ldots,d_n)$ è una matrice diagonale costante con elementi positivi $d_i,\,T=\{T_{ij}\}$ è una matrice costante, la funzione $g(x)=(g_1(x_1),\ldots,g(x_n))^T:\mathbb{R}^n\to\mathbb{R}^n$ è una mappa localmente Lipschitziana e $I=(I_1,\ldots,I_n)^T$ un vettore costante. Inoltre

(G) le funzioni g_i sono limitate e strettamente crescenti.

Mostriamo ora delle condizioni sufficienti per la GAS dell'equilibrio x=0 del modello (15):

Teorema (*)

Supponiamo g(x) soddisfi (G), se esiste una matrice diagonale $\alpha=diag(\alpha_1,\ldots,\alpha_n)$, con $\alpha_i>0$ tale che la matrice $[\alpha T]^S$ sia semidefinita negativa, allora

- (i) per ogni vettore $I \in \mathbb{R}^n$, ogni soluzione di (15) è globalmente definita in futuro e limitata, inoltre il sistema ha un unico equilibrio che è GAS;
- (ii) per ogni vettore $I\in\mathbb{R}^n$, la mappa $F:\mathbb{R}^n\to\mathbb{R}^n$ definita da F(x):=-Dx+Tg(x)+I, è un omeomorfismo di \mathbb{R}^n in \mathbb{R}^n .

Applicazioni

Risultati Dinamici

Nella dimostrazione del teorema precedente, abbiamo usato:

Teorema

Introduzione al problema

Una mappa C^1 da \mathbb{R}^n in \mathbb{R}^n è un diffeomorfismo se e solo se è propria e lo Jacobiano è sempre non nullo.

Una diretta conseguenza del teorema dimostrato, di versatile applicazione, è il seguente.

Teorema

Sia ancora g(x) una funzione soddisfacente (G). Allora i punti (i) e (ii) del teorema (\star) si verificano se una delle seguenti condizione è soddisfatta dalla matrice di connessione T:

- al la parte simmetrica di T è semidefinita negativa;
- a2 T è simmetrica e semidefinita negativa;
- a3 T è antisimmetrica o la somma di una matrice antisimmetrica e una matrice diagonale con elementi non positivi.

Esempio

Introduzione al problema

Torniamo finalmente all'esempio iniziale; si era visto come i criteri di Hartman e Olech non fossero applicabili in questo caso. È invece possibile applicare il corollario appena visto, in quanto $[T]^S$ è definita negativa, e quindi x=0 è GAS. Infatti

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{pmatrix} = - \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} + \begin{pmatrix} -1 & -1 & 2 \\ 3 & -4 & 0 \\ -2 & 0 & -1 \end{pmatrix} \begin{pmatrix} 5 \arctan x_1 \\ \arctan x_2 \\ \arctan x_3 \end{pmatrix},$$
 (16)

con

$$[T]^S = \begin{pmatrix} -1 & 1 & 0 \\ 1 & -4 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

Riferimenti

Introduzione al problema

- W. B. Gordon, "On the Diffeomorphisms of Euclidean Space", The American Mathematical Monthly, vol. 79, pp. 755-759 (1972);
- M. Forti, "On Global Asymptotic Stability of a Class of Nonlinear System Arising in Neural Netword Theory", Journal of Differential Equations, vol. 113 pp. 246-264 (1994);
- S. O. Haykin, "Neural Networks: A Comprehensive Foundation", 2nd Edition, Pearson (1999);
- K. Subramanian, P. Muthukumar, "Global asymptotic stability of complex-valued neural networkswith additive time-varying delays", Cogn Neurodyn, pp. 293-306 (March 2017)

