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Introduction

We are interested in determining the existence of minima of functionals of the form
F(u) = / f(z,u(z), Du(z)) dz, u:QCR" - R™. (1)
Q

A direct way to approach such a problem is provided by Tonelli's theorem® which requires

that F: (X,7) — R is coercive and lower semicontinuous (l.s.c.).

L Also known as "Direct Method in the Calculus of Variations".
Nicola Dal Cin

Direct Method and Convex Calculus of Vari ffe Theorem



Introduction
0000

Introduction

We are interested in determining the existence of minima of functionals of the form
F(u) = / f(z,u(z), Du(z)) dz, u:QCR" - R™. (1)
Q

A direct way to approach such a problem is provided by Tonelli's theorem® which requires

that F: (X,7) — R is coercive and lower semicontinuous (l.s.c.).

= The coerciveness is more of a "quantitative condition" and usually reduces into

finding some estimates from below on F.

= The lower semicontinuity involves "qualitative" properties of the integrand f(z, z, )

and in some situations may not hold.

L Also known as "Direct Method in the Calculus of Variations".
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Introduction
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Direct Method in the Calculus of Variations

Some recalls

Definition

Let X be a topological space and z € X. A function f: X = R is
= lower semicontinuous (l.s.c) if f~*((¢,+oc]) is open in X for all t € R;

= sequentially lower semicontinuous in the point z € X if

f(z) <liminf f(z,), forall z, — x;

T—>00

= coercive (resp. sequentially coercive) if for all ¢ € R exists a closed and compact

(resp. sequentially compact) subset K; C X such that

{zeX: f(z) <t} CK,.
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Direct Method in the Calculus of Variations

Theorem (Tonelli)

Let F : (X,7) — R a function which is
i) lower semicontinuous (resp. sequentially lower semicontinuous);
ii) coercive (resp. sequentially coercive).

Then F' admits minimum on X.
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Direct Method in the Calculus of Variations

Theorem (Tonelli)

Let F : (X,7) — R a function which is
i) lower semicontinuous (resp. sequentially lower semicontinuous);
ii) coercive (resp. sequentially coercive).

Then F' admits minimum on X.

= It is therefore necessary to find a domain and a topology which is fine enough so to

have |.s.c., but not too much so to have enough compact sets for the coerciveness.
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Sufficient conditions for lower semicontinuity

Convexity of the integrand with respect to £

= As already remarked, it is not an easy task to prove the l.s.c. of the functional F'; we

are therefore interested in conditions that ensures such a property.

= In particular we will cover the case of integrand f(z, z, &) which is "convex" with

respect to £. This condition is relatable to several physical examples:

Consider F : W, %(Q2) — R defined as

F(u) :/Q<A(9:)Vu, Vu) dx—/gg(m)udm

and representing the total energy of a thermal conductor covering the region 2 C R™,

under the effect of several heat sources.
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Main result nation of convex functions

[ Jelele}

In order to formalize what said before and state the main results, we give:

Definition

Let 2 C R™ be open and bounded, and p be a positive, finite and complete measure on

F a o-algebra of Q. A function f: Q x R™ — (—o0, +00] is said to be
= an integrand if it is .7 ® %,,—measurable;
= a normal integrand if f is an integrand and f(z,-) is l.s.c. on R™ for y—a.e. © € Q;

= a convex integrand if f is an integrand and f(z,-) is convex and |.s.c. on R™ for

p—a.e. x € Q.

= a Carathéodory integrand if it is an integrand and f(z, ) is finite and continuous on
R™ for p—a.e. z € Q.
A function f: Q x R™ x R¥ — (—c0, +00] is said to be
= a normal-convex integrand if it is .# ® %, ® PBr—measurable and there exists
N C Q with p(N) = 0 such that
i) f(z,-,-)is l.s.c. on R™ x RF for every x € Q\N. ;
ii) f(z,z,-) is convex on R* for every € Q\N and z € R™.
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[e] Jele}

Theorem (De Giorgi [1] — loffe [2])

Let f: Q x R™ x R* — [0, +00] a normal-convex integrand. Then the functional
F:LL(QR™) x L, (Q;RF) — [0, +00] defined as

F(u,v) = /Q f (@ u(z), v(z)) du(z),

is well-posed and |.s.c. with respect to the strong topology of LL(Q; R™) in the variable
u, and the weak topology of L},(Q; R¥) in the variable v.
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Main result
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Corollary

Let f: Q2 x R™ x R"™ — [0, +00] be a normal-convex integrand. Then the functional
P = [ fa,ula), Du@)ds
Q

is sequentially |.s.c. with respect to the weak topology of W (Q; R™).
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Outline of the proof

= From now on we will follow De Giorgi, Buttazzo and Dal Maso who later presented
an alternative proof of the result [3].

= Their idea was to express the integrand f as the supremum of a countable family of
functions which are easier to deal with.

= Finally, with some caution and machinery it will be possible to "drag the supremum

out of the integral". Here the hypothesis of 2 to be bounded will be crucial.

= In order to proceed, it will be necessary to recall some results about measure theory

and approximation of convex functions.
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Approximation of convex functions
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Moreau—Yoshida transform

Given a metric space (X, d) and a functional F': X — [0, +00], we define the
Moreau—Yoshida transform by setting for every A > 0

Fx(x) := inf{F(y) + Md(z,y) : y€ X}.

Proposition

The functionals F)\ satisfy the following properties:
(i) for every A > 0, the functional F is A—Lipschitz continuous.

(i) For every zz € X we have

lim Fy(z) =T1(X")F(z),

A—+oo

where I'(X ™) F is the relaxed functional of F' with respect to the topology induced by d
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Approximation of convex functions
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Let f: R™ — (—o0, +00] be a function; we denote by f** the greatest convex l.s.c.

function less or equal to f. We have that

Lemma

Let fn : R™ — (—o00, +00] be an increasing sequence of |.s.c. functions. Assume there

exists a function 6 : R — R such that

lim @

t—+oo ¢

=400 and fu(€) > 0(¢]) forall h e N,&eR" ()

Then »
o= (31
heN heN
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result Approximation of convex functions
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Introduction

In order to prove the next result we need

Lemma (continuous selections)

Let Y be a metrizable space and 7' : Y — Z(R¥) be a multimapping. Assume that
i) for every y € Y the set T'(y) is closed, convex, and non—empty.
i) Tis |.s.c., i.e. for every open set U C R the following set is open:
T (U):={yeY :Ty)nU # 0}.
Then, for every yo € Y and every vg € T'(yo) there exists a continuous function

o :Y — RF such that

a(yo) = vo

o(y) € T(y) forallyeY.
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Approximation of convex functions

Theorem

Let f : R™ x R* — (—o00,400] be a l.s.c. function with f(z,-) convex for all z € R™.

Assume one of the following conditions is satisfied:

i) there exists a continuous function & : R™ — R* such that the function

z — f(z,&0(2)) is continuous and finite;

ii) there exists a function 6 : R — R such that

lim @ =400 and f(z,&) > 0(|¢]) forevery z e R™, ¢ € RF.

t— oo

Then, there exists two sequences of continuous functions ap, : R™ — R* and
by, : R™ — R such that

F(2€) = sup{{an(2),€) + bu(z) : heN} forallze R™ ¢ cR".  (3)}
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Theorem

Let f:Q x R™ x R¥ — (—o0,+00] be a function which is a normal-convex integrand:
a) F QR B @ Br—measurable;
b) f(x,-,-) is ls.c. on R™ x R” for all z € Q\N;
¢) f(z,z,-) is convex on R* for every x € Q\N and z € R™.

If, in addition, f(z,-,-) for every x € Q satisfies one between conditions (i) and (ii) of the

previous lemma, then there exist two sequences
an : QAxR™ = R* and bn:QxR™ SR
of Carathéodory integrands such that
f(x,2,€) = sup{(an(x, 2),&) + bu(x,2) : h € N} foreveryx € Q\N,z € R™ ¢ € R".

Moreover, if f > 0 the sequences can be chosen bounded and such that

f(agz,f)zsup{[(ah(:mz),g)+bh(m,z)]+ : hEN}‘
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Main result’s proof
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Theorem (De Giorgi—loffe)

Let f: Q x R™ x R* — [0, +00] a normal-convex integrand. Then the functional
F:LL(QR™) x L, (Q;RF) — [0, +00] defined as

Flu,v) = /Q f (@, u(z), o)) du(z),

is well-posed and |.s.c. with respect to the strong topology of L}L(Q; R™) in the variable
u, and the weak topology of L},(Q;R¥) in the variable v.

« With the aim at applying previous result to approximate f from below, we consider

the additional superlinearity assumption, i.e. exists a function 6 : R — R such that

lim

@ =400 and f(z,2,6) > 0(|¢]) foreveryzeQ,zeR™ £cR
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Main result’s proof
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= This can be assumed wlog since considering f as in the hypothesis of De Giorgi's
Theorem and taking u; — w in L},(;R™) and v; — v in L},(Q; R*) we have® that
exists a convex and superlinear 6 : [0, +00) — [0, +00) such that

sup / 0((v;)dp < 1.
Q

JEN

2Indeed {v;};en is a relatively weakly compact subset in LL(Q) and we can apply De la
Vallée—Poussin theorem [4].
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Main result’s proof
0800000

= This can be assumed wlog since considering f as in the hypothesis of De Giorgi's
Theorem and taking u; — w in L},(;R™) and v; — v in L},(Q; R*) we have® that
exists a convex and superlinear 6 : [0, +00) — [0, +00) such that
sup [ 6osl)dn < 1.
JENJQ
= Therefore, for every € > 0 the function f.(z, 2,&) := f(z,2,£) + €6(|¢]) fulfills the
superlinearity condition (beyond the others) and so, as we will show, the thesis holds
for it. We conclude by noticing

/ f(@,u,v)dp < / Je(ryuy0)dp < liminf [ (2, u5,0) + 0(log)) ) di
Q Q Q

j—+oo

Jj—+oo

= timinf [ J(uws0) +2 [ 0o
Q Q

2Indeed {v;};en is a relatively weakly compact subset in LL(Q) and we can apply De la

Vallée—Poussin theorem [4].
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Now, given a superlinear f that satisfies the theorem assumptions, we know that exist

sequences of bounded Carathéodory integrands that approximate it:

f(z,u(x),v(z)) = sup{ ((ah(x,u(x)),v(m)> + by (=, u(az)))+ : he N}.

To go further we need

Lemma (De Giorgi, Buttazzo, Dal Maso)

Let {gn }rhen be a sequence of p—measurable functions from Q to (—oo, +00] such that

gn >~ for a suitable v € LL(Q) and g = supy,cy gn- Then

N
dy = sup sup / i dpt.
/9 p Ne%{BN}Z o 1

In particular for every g € L,,(2) we have

/g+d,u:sup{/ gdu : Beﬂ}. >
Q B b
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Main result’s proof
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= By applying the lemma to gp,(x)" := [(an(x, u(x)),v(x)) 4 bp(x, u(x))]" we deduce
the representation

N

F(u,v) = sup sup Z/BN ((ah(x,u(m)),v(x)) + bh(ar:,u(gc)))7L du(z).

NeN{BN} =1
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Direct Method and Convexity in the Calculus of Variations: De Giorgi—loffe Theorem 19 /27




Main result’s proof
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= By applying the lemma to gp,(x)" := [(an(x, u(x)),v(x)) 4 bp(x, u(x))]" we deduce
the representation

F(uv) = sup sup 37 | (fan@ ). o@) + buGe.u(@) duto).

= Summarizing: it is sufficient to show that if a(z, z) and b(z, z) are bounded

Carathéodory integrands on 2 x R™, and E € .Z then
Gu,v) = /E ({ae, u(@)), v(@) + b, u(x)) ) du()

is sequentially l.s.c. with respect to strong convergence in L}l(E;]Rm) of u and the

weak convergence in L, (E;R¥) of v.
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= Let us consider u; — w in L}, (E;R™) and v; — v in L}, (E;R*) and show that
G(u,v) < liminf; G(uj,v;).

cola Dal Ci University of Udine
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Main result’s proof
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= Let us consider u; — w in L}, (E;R™) and v; — v in L}, (E;R*) and show that
G(u,v) < liminf; G(uj,v;).
= The latter term, not depending on v, is easier. Every subsequence {u;, }sen has a

further subsequence such that u;, — u a.e. and so

| v u@)ante) = Jim [ bGo.u., (@)dita).

l—oo J g
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= Let us consider u; — w in L}, (E;R™) and v; — v in L}, (E;R*) and show that
G(u,v) < liminf; G(uj,v;).

= The latter term, not depending on v, is easier. Every subsequence {u;, }sen has a

further subsequence such that u;, — u a.e. and so

| v u@)ante) = Jim [ bGo.u., (@)dita).

l—oo J g

= We conclude that the latter holds for the whole {u;};en by recalling

Proposition (Uryshon)

Let (X, d) be metric space containing z and {z,, }nen C X. The following are equivalent
a) The sequence zn, i z.

d
b) Every subsequence xy, has a further subsequence z,,, — x.
J
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Main result’s proof
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Finally, we want to prove that

/E<a(1‘,U(w))av(9€)>du(w)= lim [ (a(z,u;(2)), vj(x))du(z).

j—> |g

It is enough to ask that g; — g almost uniformly on E since

Proposition
Let {g;},jen be a bounded sequence in L;°(E;R*) and {v;};en a sequence in L), (E;R")
such that

= g; — g almost uniformly on E;

= v; = vin LL(E;R).
Then

/ (g;v)dp = lim [ (gj,v;)dp.
E E

j——+oo
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Main result’s proof
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Above proposition applies to our setting. Indeed, g;(x) := a(x, u;(z)) are measurable
and bounded. Moreover, by recalling the fact that a(-,-) is Carathéodory, u; — w in

L}L(E;Rm), and the subsequence proposition we can conclude by using

Theorem (Severini—Egorov [5])

Let E be a measurable subset of R", with u(F) < +oo. Let {g;};en be a sequence of
measurable and p—a.e. bounded functions on E. If g; converges p—a.e. in E to a

function g which is measurable and finite, then

g; — g almost—uniformly on E.
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Conclusions
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Conclusions

Theorem (De Giorgi—loffe)

Let f: Q x R™ x R* — [0, +00] a normal-convex integrand. Then the functional
F:LL(QR™) x L, (Q;RF) — [0, +00] defined as

Flu,v) = /Q f (@, u(e), o(z)) du(z),

is well-posed and |.s.c. with respect to the strong topology of L}L(Q; R™) in the variable
u, and the weak topology of LL(Q; R*) in the variable v.
Remarks:

= The last results can be extended to non—constant sign functions, as long as the

functional are well defined (see [3]).

= Provided the measure is regular enough, the convexity condition is even a neces: r%ix

condition for the functional to be |.s.c.
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Theorem (Olech [6])

With the further assumption that p is a non—-atomic measure, and that

f:QxR™x RF — [0,400] is an integrand. If the functional
F(u) = | f(@,u(z),0(0) du(e)
Q

is well—defined in L}, (;R™) x L}, (S R*) with values in [0, +0c) and I.s.c. with respect
to the strong topology of L},(§; R™) in the variable u, and the weak topology of
L}L(Q; R*) in the variable v, then f is a normal-convex integrand.
Remarks:
= In general Olech’s result does not apply to functions which depend on Du.

= If n > 1 for those functions the fact that "convexity implies |.s.c." is not optimal.

This led to the study of weaker definitions of convexity (see [7]).
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Lemma (measurable selections)

Let Y be a complete separable metric space and let 7": (Q, %) — Z(Y) be a

multimapping. Assume that
(i) fro every x € Q the set T'(z) is closed and not empty;
(i) T is .F ® B(Y )—measurable, in the sense that its graph
{(z,y) € QXY : yeT(x)}isin F @ B(Y).
Then, there exists a sequence of measurable functions o, : (Q,.%) — (Y, 8(Y)) such
that for every & € Q2 the set {ox(z) : h € N} is dense in T'(z).

Theorem (De la Vallée—Poussin criterion)
Let (2,7, 1) be a measure space with . positive and finite, and let 7 C L,,(2). Then
s relatively compact in the weak topology of L},(2) if and only if there exists a
function 6 : [0, +00) — [0, +00) such that

t—+oo ¢

lim @) = +oo, and sup{/ O(|ul)dp - ueﬁf} < 4o0. >
Q
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